Với giải Bài 9 trang 86 SGK Toán 11 Chân trời sáng tạo chi tiết trong Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 8 trang 86 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 9 trang 86 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11
Bài 9 trang 86 Toán 11 Tập 2: Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Gọi M,N lần lượt là trung điểm của AB và AD.
a) Chứng minh rằng .
b) Tính khoảng cách từ M đến mặt phẳng (SNC).
Lời giải:
a) Tam giác SAB đều có M là trung điểm AB nên SM ⊥ AB. Mà (SAB) ⊥ (SAB) nên SM ⊥ (ABCD). Suy ra SM ⊥ NC.
Xét ΔAMD và ΔDNC
AM = DN
AD = DC
Do đó ΔAMD và ΔDNC (c.g.c)
Suy ra (hai góc tương ứng)
Mà nên .
Từ đó ta có tam giác DNI vuông tại I hay DM ⊥ NC. Mà SM ⊥ NC nên NC ⊥ (SND).
Vậy (SNC) ⊥ (SMD).
b) Kẻ MH ⊥ SI (H SI).
Vì NC ⊥ (SMD) ⇒ NC ⊥ MH ⇒ MH ⊥ (SNC)
Tam giác SAB đều có SM là trung tuyến nên
Tam giác CND vuông có DI là đường cao nên .
Suy ra
•
•
Và SM ⊥ (ABCD) nên SM ⊥ MI.
Tam giác SMI vuông tại M có MH là đường cao
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3 trang 86 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên và cạnh đáy đều bằng a...
Bài 4 trang 86 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng và chiều cao bằng ...
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 1: Biến cố giao và quy tắc nhân xác suất
Bài 2: Biến cố giao và quy tắc nhân xác suất
Bài tập cuối chương 9 trang 98
Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.