Bạn cần đăng nhập để đánh giá tài liệu

Bài 3.38 trang 73 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

114

Với giải Bài 3.38 trang 73 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung trang 73 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Bài 3.38 trang 73 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Bài 3.38 trang 73 Toán 8 Tập 1: Cho hình vuông ABCD. Lấy một điểm E trên cạnh CD. Tia phân giác của góc DAE cắt cạnh DC tại M. Đường thẳng qua M vuông góc với AE cắt BC tại N. Chứng minh DM + BN = MN.

Lời giải:

Bài 3.38 trang 73 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Vì ABCD là hình vuông nên D^=90° .

Đường thẳng qua M vuông góc với AE cắt BC tại N nên APM^=90° .

Do đó D^=APM^=90° .

Xét ∆ADM và ∆APM có:

D^=APM^=90° (chứng minh trên)

Cạnh AM chung

MAD^=MAP^ (vì AM là tia phân giác của DAP^ ).

Do đó ∆ADM = ∆APM (cạnh huyền – góc nhọn).

Suy ra MD = MP và AD = AP (các cặp cạnh tương ứng).

Ta có: AB = AD và AD = AP nên AB = AP.

Xét ∆ABN và ∆APNcó:

ABN^=APN^=90°;

AN là cạnh chung;

AB = AP (chứng minh trên)

Do đó ∆ABN = ∆APN (cạnh huyền – cạnh góc vuông).

Suy ra BN = PN (hai cạnh tương ứng).

Khi đó MN = MP + PN = MD + BN.

Vậy DM + BN = MN.

Đánh giá

0

0 đánh giá