Ôn tập chương 4 (Lý thuyết + 35 bài tập có lời giải)

482

Toptailieu.vn xin giới thiệu sơ lược Lý thuyết Ôn tập chương 4 (Lý thuyết + 35 bài tập có lời giải) Toán 11 chọn lọc, hay nhất giúp học sinh lớp 11 ôn luyện để nắm chắc kiến thức cơ bản và đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

Ôn tập chương 4 (Lý thuyết + 35 bài tập có lời giải)

A. Lý thuyết Ôn tập chương 4

GIỚI HẠN CỦA DÃY SỐ

I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

1. Định nghĩa

Định nghĩa 1

    Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

    Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án hay un → 0 khi n → +∞.

Định nghĩa 2

    Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án hay vn → a khi n → +∞.

2. Một vài giới hạn đặc biệt

a) Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với k nguyên dương;

b) Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án nếu |q| < 1;

c) Nếu un = c (c là hằng số) thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý: Từ nay về sau thay cho Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án ta viết tắt là lim un = a.

II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN

Định lí 1

a) Nếu lim un = a và lim vn = b thì

    lim (un + vn) = a + b

    lim (un – vn) = a – b

    lim (un.vn) = a.b

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

IV. GIỚI HẠN VÔ CỰC

1. Định nghĩa

    - Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

    Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.

    - Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.

    Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.

Nhận xét: un = +∞ ⇔ lim(–un) = –∞

2. Một vài giới hạn đặc biệt

Ta thừa nhận các kết quả sau

a) lim nk = +∞ với k nguyên dương;

b) lim qn = +∞ nếu q > 1.

3. Định lí 2

a) Nếu lim un = a và lim vn = ±∞ thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

c) Nếu lim un = +∞ và lim vn = a > 0 thì

GIỚI HẠN CỦA HÀM SỐ

I. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM

1. Định nghĩa

Định nghĩa 1

    Cho khoảng K chứa điểm x0 và hàm số y = f(x) xác định trên K hoặc trên K \ {x0}.

    Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K \{x0} và xn → x0, ta có f(xn) → L.

    Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án hay f(x) → L khi x → x0.

Nhận xét: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với c là hằng số.

2. Định lí về giới hạn hữu hạn

Định lí 1

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Giới hạn một bên

Định nghĩa 2

    - Cho hàm số y = f(x) xác định trên (x0; b).

    Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L.

    Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

    - Cho hàm số y = f(x) xác định trên (a; x0).

    Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi x → x0 nếu với dãy số (xn) bất kì, a < xn < x0 và xn → x0, ta có f(xn) → L.

    Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Định lí 2

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

II. GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC

Định nghĩa 3

a) Cho hàm số y = f(x) xác định trên (a; +∞).

Ta nói hàm số y = f(x) có giới hạn là số L khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L.

Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b) Cho hàm số y = f(x) xác định trên (–∞; a).

Ta nói hàm số y = f(x) có giới hạn là số L khi x → –∞ nếu với dãy số (xn) bất kì, xn < a và xn → –∞, ta có f(xn) → L.

Kí hiệu: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chú ý:

a) Với c, k là hằng số và k nguyên dương, ta luôn có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

b) Định lí 1 về giới hạn hữu hạn của hàm số khi x → x0 vẫn còn đúng khi xn → +∞ hoặc x → –∞

III. GIỚI HẠN VÔ CỰC CỦA HÀM SỐ

1. Giới hạn vô cực

Định nghĩa 4

Cho hàm số y = f(x) xác định trên (a; +∞).

Ta nói hàm số y = f(x) có giới hạn là –∞ khi x → +∞ nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → –∞

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

2. Một vài giới hạn đặc biệt

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Một vài quy tắc về giới hạn vô cực

a) Quy tắc tìm giới hạn của tích f(x).g(x)

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
L > 0 +∞ +∞
–∞ –∞
L < 0 +∞ –∞
–∞ +∞

b) Quy tắc tìm giới hạn của thương Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án Dấu của g(x) Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
L ± ∞ Tùy ý 0
L > 0 0 +∞ +∞
–∞ –∞
L < 0 +∞ –∞
–∞ +∞

HÀM SỐ LIÊN TỤC

I. HÀM SỐ LIÊN TỤC TẠI MỘT ĐIỂM

Định nghĩa 1

    Cho hàm số y = f(x) xác định trên khoảng K và x0 ∈ K.

    Hàm số y = f(x) được gọi là liên tục tại x0 nếu Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

II. HÀM SỐ LIÊN TỤC TRÊN MỘT KHOẢNG

Định nghĩa 2

    Hàm số y = f(x) được gọi là liên tục trên một khoảng nếu nó liên tục tại mọi điểm của khoảng đó.

    Hàm số y = f(x) được gọi là liên tục trên đoạn [a; b] nếu nó liên tục trên khoảng (a; b) và

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

III. MỘT SỐ ĐỊNH LÍ CƠ BẢN

Định lí 1

    a) Hàm số đa thức liên tục trên toàn bộ tập số thực R.

    b) Hàm số phân thức hữu tỉ và hàm số lượng giác liên tục trên từng khoảng xác định của chúng.

Định lí 2

    Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x0. Khi đó:

    a) Các hàm số y = f(x) + g(x), y = f(x) – g(x) và y = f(x).g(x) liên tục tại x0;

    b) Hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án liên tục tại x0 nếu g(x0) ≠ 0.

Định lí 3

    Nếu hàm số y = f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0, thì tồn tại ít nhất một điểm c ∈ (a; b) sao cho f(c) = 0..

Định lí 3 có thể phát biểu theo một dạng khác như sau:

    Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a).f(b) < 0, thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (a, b).

B. Bài tập Ôn tập chương 4

Câu 1: Biết limun=5;limvn=a;limun+3vn=2018, khi đó a bằng

A. 617

B. 20183

C. 20233

D. 671

Đáp án: D

Câu 2: Giá trị của giới hạn limx1xx32x1x43 là

A. 32

B. 0

C. – 2

D. 1

Đáp án: B

Câu 3: Kết quả của giới hạn limx2x2+5x3x2+6x+3 là

A. 2

B. 3

C. – 2

D. +

Đáp án: A

Câu 4: Cho giới hạn limx4x313x2+x+2=ab với a,b và ab là phân số tối giản. Chọn kết quả đúng trong các kết quả sau:

A. a=11,  b=4

B. a=11,  b=3

C. a=10,  b=3

D. a=11,  b=5

Đáp án: A

Câu 5: Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai?

A. lim1nk=0 với k là số nguyên dương.

B. Nếu q<1 thì limqn=0

C. Nếu limun=a và limvn=b thì  limunvn=ab

D. Nếu limun=a và limvn=+ thì limunvn=0

Đáp án: C

Câu 6: Tính giới hạn limx23+2xx+2 

A. 2

B. 

C.  +

D. 32

Đáp án: C

Câu 7: Chọn khẳng định sai trong các khẳng định sau:

A. Hàm số  y=5x3+x2 liên tục trên 

B. Hàm số  y=3x5x+3 liên tục trên 

C. Hàm số y=2x2xx+1  liên tục trên ;1 và 1;+

D. Hàm số  y=x5+3x2+5 liên tục trên 

Đáp án: B

Câu 8: Trong các giới hạn dãy số dưới đây, giới hạn có kết quả đúng là

A. lim3n4+3=

B. lim3n4+3=0

C. limn4+2=+

D. lim5n42=

Đáp án: A

Câu 9: limx3+4x3x3 có kết quả là

A. 9

B. 0

C. 

D. +

Đáp án: D

Câu 10: Hàm số nào dưới đây gián đoạn tại x=2 ?

A. y=2x2+x5

B. y=x+5x2

C. y=1x+2

D. y=x22x

Đáp án: C

Câu 11: Trong các hàm số sau, hàm số nào liên tục tại x=1?

A. y=x+3

B. y=x+5x1

C. y=3xx2+x2

D. y=x4

Đáp án: A

Câu 12: Tính limx+2x34x2+5 .

A. 2

B. 3

C. 

D. +

Đáp án: C

Câu 13: Mệnh đề nào sau đây sai?

A. limn+3n2+1=0

B. limn+1n1=1

C. lim12n+1=12

D. lim2n+1=+

Đáp án: C

Câu 14: Giới hạn limxa1xa  bằng

A.  +

B. 0

C. 12a

D. 

Đáp án: D

Câu 15: Trong các giới hạn sau đây, giới hạn nào là 0?

A. lim3n

B. lim2n23n+1n3+4n23

C. limnkk*

D. limn3n2+3

Đáp án: B

Câu 16: Tính giới hạn L=limx12xx+1 .

A. L=2

B. L=1

C. L=1

D. L=2

Đáp án: B

Câu 17: Giá trị của lim1nkk* bằng

A. 4

B. 0

C. 2

D. 5

Đáp án: B

Câu 18: Cho hàm số fx thỏa mãn limx2018+fx=2018 và limx2018fx=2018. Khi đó khẳng định nào sau đây đúng:

A. limx2018fx=0

B. limx2018fx=2018

C. limx2018fx=2018

D. Không tồn tại limx2018fx.

Đáp án: D

Câu 19: Cho dãy số un,vn thỏa limun=2,limvn=1. Tính lim2un3vn .

A. 1

B. 2

C. 3

D. 7

Đáp án: A

Câu 20: Hàm số y=fx có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?

 (ảnh 1)

A. 0

B. 1

C. 3

D. 2

Đáp án: B

Câu 21: Cho limx1x+122x=ab với a,b,0a,b3, khi đó a+2b bằng

A. 3

B. 6

C. 4

D. 2

Đáp án: B

Câu 22: Trong các giới hạn, giới hạn nào không tồn tại?

A. limx3x23x+2

B.  limx316x2

C.  limx3x29x+3

D. limx3x29

Đáp án: D

Câu 23: Cho a là một hằng số, limx+ax22x+x32+x2+1 có giá trị bằng

A. a+12

B. a

C. a+1

D. 1a

Đáp án: C

Câu 24: Cho hàm số fx=x2x4khi    x>4ax+54  khi     x4 , trong đó a là một hằng số đã biết. Hàm số có giới hạn hữu hạn tại x=4 khi và chỉ khi

A.  a=1

B.  a=1

C. a=14

D. a=14

Đáp án: C

Câu 25: Tìm giá trị thực của tham số m để hàm số fx=x2x2x2   khi  x2m                    khi  x=2  liên tục tại x=2 

A. m=0

B.  m=2

C. m=1

D. m=3

Đáp án: D

Câu 26: Biết rằng limx35x3+1533x2=a3+b với a,b . Tính a2+b2 

A.  152

B.  2254

C. 2254

D. 2252

Đáp án: B

Câu 27: Cho hàm số fx=x3x2+2x2x1  khi  x13x+m                     khi  x=1 . Để fx liên tục tại x=1 thì m bằng

A. 1

B. 0

C. 2

D. – 1

Đáp án: B

Câu 28: Cho hàm số fx=3x+a1        khi  x01+2x1x   khi  x>0. Tìm tất cả giá trị của a để hàm số đã cho liên tục tại điểm x=0.

A. a=1

B.  a=3

C. a=2

D. a=4

Đáp án: C

Câu 29: Trong các giới hạn dưới đây, giới hạn nào bằng + ?

A. limx42x14x

B. limx+x3+2x+3

C. limxx2+x+1x1

D. limx4+2x14x

Đáp án: A

Câu 30: Cho hàm số fx=x21x1  khi  x1m2   khi  x=1 . Tìm m để hàm liên tục trên .

A. m=4

B. m=4

C. m=1

D. m=2

Đáp án: A

Câu 31: Tính  (ảnh 6).

A. + ∞.

B. +-∞.

C. 0

D. – 7

Đáp án: B

Câu 32: Tính  (ảnh 5).

A. 0

B. - ∞.

C. 2

D. - 2

Đáp án: C

Câu 33: Tính  (ảnh 4).

A. -1/3.

B. - ∞.

C. 1/3.

D. + ∞.

Đáp án: A

Câu 34: Tìm các giá trị thực của tham số m để hàm số  (ảnh 3) có giới hạn tại x= 0.

A. m = -1

B. m = 2

C. m = -2

D. m = 1

Đáp án: D

Câu 35: Cho dãy số (un) với  (ảnh 2). Khi đó lim un bằng

A. 0.

B. 1.

C. 1/2.

D. 100

Đáp án: B
Đánh giá

0

0 đánh giá