Toptailieu.vn giới thiệu Giải bài tập Toán lớp 7 Bài 8: Đại lượng tỉ lệ nghịch sách Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7 Tập 1. Mời các bạn đón xem:
Giải SGK Toán 7 Bài 8 (Cánh diều): Đại lượng tỉ lệ nghịch
* Khi số công nhân tăng lên thì thời gian hoàn thành công việc sẽ tăng lên hay giảm đi?
* 27 công nhân hoàn thành công việc đó trong bao lâu?
Lời giải:
* Khi số công nhân tăng lên thì thời gian hoàn thành công việc sẽ giảm đi.
* 27 công nhân sẽ hoàn thành công việc trong số ngày là: 12.18:27 = 8 ngày.
Lời giải:
Ta có: v =
+) Với t = 3 suy ra (km/h)
+) Với t = 4 suy ra (km/h)
+) Với t = 5 suy ra (km/h)
+) Với t = 6 suy ra (km/h)
Ta có bảng sau:
t (h) |
3 |
4 |
5 |
6 |
v (km/h) |
80 |
60 |
48 |
40 |
Luyện tập 1 trang 65 Toán lớp 7: Một công nhân theo kế hoạch cần phải làm 1 000 sản phẩm.
b) x và y có phải là hai đại lượng tỉ lệ nghịch hay không? Nếu có hãy xác định hệ số tỉ lệ.
c) Tính giá trị của y khi x = 10; x = 20; x = 25.
Lời giải:
a) Công thức tính y theo x là: y = .
b) x; y là hai đại lượng tỉ nghịch với nhau vì khi x tăng thì y giảm và y liên hệ với x theo công thức y = với hệ số tỉ lệ là a = 1000.
c) Công thức y = với hệ số tỉ lệ a = 1000.
+) Với x = 10 thì y =
+) Với x = 20 thì y =
+) Với x = 25 thì y = .
Hoạt động 2 trang 65 Toán lớp 7: Cho biết x, y là hai đại lượng tỉ lệ nghịch với nhau:
a) Hãy xác định hệ số tỉ lệ.
b) Tìm số thích hợp cho dấu chấm hỏi trong bảng trên.
c) So sánh các tích: x1.y1; x2.y2; x3.y3; x4.y4.
d) So sánh các tỉ số: và ; và ; và .
Lời giải:
a) Vì x và y là hai đại lượng tỉ lệ nghịch với nhau nên xy = a (với a là hệ số tỉ lệ).
Thay x1 = 20; y1 = 9 ta được: a = 20.9 = 180.
Vậy xy = 180 với hệ số tỉ lệ a = 180.
b) Do x.y = 180 nên
+) Với = 18 thì
+) Với = 15 thì
+) Với = 5 thì
Ta có bảng sau:
x |
= 20 |
= 18 |
= 15 |
= 5 |
y |
= 9 |
= 10 |
= 12 |
= 36 |
c) Ta có:
= 20.9 = 180;
= 18.10 = 180;
= 15.12 = 180;
= 5.36 = 180.
Vậy .
d) Ta có: và nên;
và nên ;
và nên .
Vậy và .
Lời giải:
Gọi t là thời gian ô tô đã đi (t > 0) (giờ).
Vì vận tốc thực tế gấp vận tốc dự định nên tỉ lệ giữa vận tốc thực tế và vận tốc dự định là .
Mà vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau nên tỉ lệ thời gian dự định với thời gian thực tế là . Ta có:
Do đó: t = (giờ).
Vậy thời gian ô tô đã đi thực tế là 4,5 giờ.
Lời giải:
Gọi x (công nhân), y (ngày) lần lượt là số công nhân và thời gian đội sản xuất hoàn thành hợp đồng tương ứng (x y > 0).
Khi đó, mối quan hệ giữa số công nhân (x) và thời gian hoàn thành hợp đồng (y) là hai đại lượng tỉ lệ nghịch với nhau, áp dụng tính chất tỉ lệ nghịch ta có: x1.y1 = x2.y2
Thay x1 = 56; y1 = 21; y2 = 14 ta có: 56.21 = 14.x2
Suy ra
Số công nhân mà xưởng may cần tăng thêm là: 84 – 56 = 28 (công nhân).
Vậy xưởng may cần bổ sung 28 người để hoàn thành hợp đồng trong 14 ngày.
Lời giải:
Gọi x; y; z là số vòng mà mỗi bánh răng quay được trong mỗi phút (x; y; z > 0)
Vì số răng của bánh răng tỉ lệ nghịch với số vòng quay được trong một phút nên ta có:
24.x = 18.y = 12.z
Theo bài số vòng quay của bánh răng c quay được trong mỗi phút là 18 vòng nên z = 18 Khi đó 24.x = 18.y = 12.18 hay 24.x = 18.y = 216
Suy ra:
+) 24.x = 216 do đó (vòng)
+) 18.y = 216 do đó (vòng)
Vậy số vòng quay mỗi phút của mỗi bánh răng a và b là 9 vòng và 12 vòng.
Bài tập 1 trang 68 Toán lớp 7: Giá trị của hai đại lượng x; y được cho bởi bảng sau:
Hai đại lượng x, y có tỉ lệ nghịch với nhau không? Vì sao?
Lời giải:
Ta có:
= 3.32 = 96;
= 4.24 = 96;
= 6.16 = 96;
= 8.12 = 96;
= 48.2 = 96.
Ta thấy = 96 nên hai đại lượng x và y tỉ lệ nghịch với nhau.
b) Viết công thức tính y theo x.
c) Tính giá trị của y khi x = 12; x = 18; x = 60.
Lời giải:
a) Vì x và y là hai đại lượng tỉ lệ nghịch với nhau nên hệ số tỉ lệ a = x1.y1 = 36.15 = 540.
b) Vì y và x là hai đại lượng tỉ lệ nghịch với nhau theo hệ số tỉ lệ a = 540 nên y = .
Vậy công thức tính y theo x là y = .
c) Với x = 12 thì y = = 45;
Với x = 18 thì y = = 30;
Với x = 60 thì y = = 9.
Lời giải:
Gọi x (người) và y (ngày) lần lượt là số người thợ và số ngày để xây hết một tòa nhà (x ; y > 0).
Khi đó, mối liên hệ giữa số người thợ và số ngày xây nhà tỉ lệ nghịch với nhau nên theo tính chất tỉ lệ nghịch ta có .
Thay = 35; = 168; = 28 ta được: 35.168 = 28.
Suy ra (ngày)
Vậy 28 người thợ thì phải xây trong 210 ngày để xong tòa nhà.
Lời giải:
Vì giá hoa tăng lên 25% nên giá hoa mới sẽ bằng 125% giá hoa gốc.
Ta có 125% = , do đó giá hoa mới bằng giá hoa gốc.
Gọi số bông hoa mà chị Lan sẽ mua được là x (bông).
Vì số bông hoa mua được tỉ lệ nghịch với giá tiền một bông hoa nên tỉ số của số bông hoa mua dự định với số bông hoa mua thực tế là .
Do đó ta có: .
Vậy số hoa mà chị lan mua được là: x = (bông).
Vậy chị Lan sẽ mua được 8 bông hoa.
(Nguồn: https://vi.wikipedia.org)
Lời giải:
Đổi 4 phút 36,85 giây = 276,85 giây;
Đổi 4 phút 38,78 giây = 278,78 giây.
Tỉ số giữa thời gian bơi của Ánh Viên tại Thế vận hội mùa hè năm 2016 và Giải bơi vô địch thế giới tổ chức ở Kazan (Nga) năm 2015 là: =
Vì tốc độ bơi và thời gian bơi tỉ lệ nghịch với nhau nên tỉ số tốc độ bơi trung bình của Ánh Viên tại thế vận hội mùa hè năm 2016 với giải bơi vô địch thế giới tổ chức ở Kazan (Nga) năm 2015 là:
(Nguồn: https:// www.mt.gov.vn)
Nếu tàu cao tốc loại đó chạy một quãng đường trong 4 giờ thì tàu cao tốc thế hệ đầu tiên sẽ phải chạy quãng đường đó trong bao nhiêu giờ.
Lời giải:
Cách 1:
Do vận tốc tàu cao tốc hiện nay gấp 1,43 lần vận tốc của tàu cao tốc thế hệ đầu tiên nên vận tốc tàu cao tốc thế hệ đầu tiên là:
300:1,43 = 209,79 (km/h)
Quãng đường tàu cao tốc hiện nay chạy trong 4 giờ là:
300.4 = 1200 (km)
Thời gian tàu cao tốc thế hệ đầu tiên chạy trên quãng đường đó là:
1200: 209,79 = 5,72 (giờ)
Vậy tàu cao tốc thế hệ đầu tiên chạy trên con đường đó sẽ hết 5,72 giờ.
Cách 2:
Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau nên khi vận tốc của tàu cao tốc hiện nay gấp 1,43 lần tàu cao tốc thế hệ đầu tiên thì thời gian chạy trên cùng một quãng đường của tàu cao tốc thế hệ đầu tiên sẽ gấp 1,43 lần thời gian chạy của tàu cao tốc hiện nay.
Khi đó thời gian mà tàu cao tốc thế hệ đầu tiên chạy trên trên quãng đường mà tàu cao tốc hiện nay đã chạy hết 4 giờ là:
4.1,43 = 5,72 (km/h)
Vậy tàu cao tốc thế hệ đầu tiên chạy trên con đường đó sẽ hết 5,72 giờ.
Lời giải:
Gọi x (số răng) và y (vòng quay) lần lượt là số răng và số vòng quay của bánh răng (x ; y > 0).
Vì số vòng quay và số răng của bánh răng tỉ lệ nghịch với nhau nên x tỉ lệ nghịch với y.
Áp dụng tính chất tỉ lệ nghịch ta có:
Thay = 40; = 15; = 20 ta được: 40.15 = 20.
Suy ra
Vậy bánh răng thứ hai có 30 răng.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.