Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng

1.3 K

Với giải Bài 6 trang 86 Toán lớp 10 Tập 2 Cánh diều chi tiết trong Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải bài tập Toán 10 Bài 6 trang 86 Toán lớp 10 Tập 2

Bài 6 trang 86 Toán lớp 10 Tập 2: Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

Lời giải:

Gọi d là đường thẳng đi qua B và cách đều A và C.

Do d đi qua B(– 1; 2) nên phương trình đường thẳng d có dạng a(x + 1) + b(y – 2) = 0 hay ax + by + a – 2b = 0 (với a và b không đồng thời bằng 0).

Vì d cách đều A và C nên d(A, d) = d(C, d).

Cho ba điểm A(2; 4), B(– 1; 2) và C(3; – 1). Viết phương trình đường thẳng (ảnh 1)

Trường hợp 1: 3a + 2b = 4a – 3b ⇔ a = 5b.

Chọn b = 1, a = 5 . 1 = 5, ta có phương trình đường thẳng d là 5x + y + 5 – 2 = 0 hay 5x + y + 3 = 0.

Trường hợp 2: 3a + 2b = – (4a – 3b) ⇔ 7a = b.

Chọn a = 1, b = 7 . 1 = 7, ta có phương trình đường thẳng d là x + 7y + 1 – 2 . 7 = 0 hay x + 7y – 13 = 0.

Vậy phương trình đường thẳng cần lập là 5x + y + 3 = 0 hoặc x + 7y – 13 = 0.

Lưu ý: Do vectơ n=a;b là vectơ pháp tuyến của đường thẳng d, mà một đường thẳng có vô số vectơ pháp tuyến, nên khi ta có hệ thức liên hệ giữa a và b thì ta có thể chọn a rồi suy ra b hoặc ngược lại.

Xem thêm các bài giải Toán 10 Kết nối tri thức hay, chi tiết khác:

Câu hỏi khởi động trang 81 Toán lớp 10 Tập 2: Trong thực tiễn, có những tình huống đòi hỏi chúng ta phải xác định

Hoạt động 1 trang 81 Toán lớp 10 Tập 2: Nêu vị trí tương đối của hai đường thẳng trong mặt phẳng

Hoạt động 2 trang 81 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ, cho hai đường thẳng ∆1, ∆2 lần lượt

Luyện tập 1 trang 82 Toán lớp 10 Tập 2: Xét vị trí tương đối của hai đường thẳng

Luyện tập 2 trang 82 Toán lớp 10 Tập 2: Xét vị trí tương đối của đường thẳng d: x + 2y – 2 = 0 với mỗi đường thẳng sau

Hoạt động 3 trang 83 Toán lớp 10 Tập 2: Trong mặt phẳng, cho hai đường thẳng ∆1 và ∆2 cắt nhau tại A tạo thành

Hoạt động 4 trang 83 Toán lớp 10 Tập 2: Cho hai đường thẳng ∆1, ∆2 cắt nhau tại I và có vectơ chỉ phương lần

Hoạt động 5 trang 84 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ, cho hai đường thẳng ∆1 và ∆2 có vectơ chỉ

Luyện tập 3 trang 84 Toán lớp 10 Tập 2: Tính số đo góc giữa hai đường thẳng ∆1 và ∆2 trong mỗi trường hợp sau:

Hoạt động 6 trang 85 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ, cho đường thẳng ∆: 2x + y – 4 = 0 và điểm M(– 1; 1)

Luyện tập 4 trang 85 Toán lớp 10 Tập 2: a) Tính khoảng cách từ điểm O(0; 0) đến đường thẳng

Bài 1 trang 86 Toán lớp 10 Tập 2: Xét vị trí tương đối của mỗi cặp đường thẳng sau:

Bài 2 trang 86 Toán lớp 10 Tập 2: Tính số đo góc giữa hai đường thẳng d1: 2x – y + 5 = 0 và d2: x – 3y + 3 = 0.

Bài 3 trang 86 Toán lớp 10 Tập 2: Tính khoảng cách từ một điểm đến một đường thẳng trong mỗi trường hợp sau:

Bài 4 trang 86 Toán lớp 10 Tập 2: Với giá trị nào của tham số m thì hai đường thẳng sau đây vuông góc?

Bài 5 trang 86 Toán lớp 10 Tập 2: Cho ba điểm A(2; – 1), B(1; 2) và C(4; – 2). Tính số đo góc BAC

Bài 7 trang 86 Toán lớp 10 Tập 2: Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường

Đánh giá

0

0 đánh giá