Xét đa thức p(n) = n2 – n + 41 trong HĐ2 trang 26 Chuyên đề Toán 10

505

Với giải HĐ1 trang 26 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 3: Phương pháp quy nạp toán học giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 3: Phương pháp quy nạp toán học

HĐ2 trang 26 Chuyên đề Toán 10: Xét đa thức p(n) = n2 – n + 41.

a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.

b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

Lời giải:

a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.

b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,..., 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá