Với giải Bài 2.1 trang 30 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 3: Phương pháp quy nạp toán học giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 3: Phương pháp quy nạp toán học
Bài 2.1 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.
a) 2 + 4 + 6 + ... + 2n = n(n + 1);
b) 12 + 22 + 32 +... + n2 = .
Lời giải:
a) Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.1 = 1(1 + 1).
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
2 + 4 + 6 + ... + 2k = k(k + 1)
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
2 + 4 + 6 + ... + 2k + 2(k+1) = (k + 1)[(k + 1) + 1]
Thật vậy, sử dụng giả thiết quy nạp ta có:
2 + 4 + 6 + ... + 2k + 2(k+1)
= k(k + 1) + 2(k+1) = (k + 1)(k + 2) = (k + 1)[(k + 1) + 1].
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
b) Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 12 = .
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
12 + 22 + 32 +... + k2 = .
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
12 + 22 + 32 +... + k2 + (k + 1)2 = .
Thật vậy, sử dụng giả thiết quy nạp ta có:
12 + 22 + 32 +... + k2 + (k + 1)2
= (k + 1)2 +
=
=
=
=
= .
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.