Khai triển (a + b)n, n {1; 2; 3; 4; 5} trong HĐ1 trang 32 Chuyên đề Toán 10

467

Với giải HĐ1 trang 32 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 4: Nhị thức Newton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 4: Nhị thức Newton

HĐ1 trang 32 Chuyên đề Toán 10: Khai triển (a + b)n, n  {1; 2; 3; 4; 5}.

Trong Bài 25 SGK Toán 10 (bộ sách Kết nối tri thức với cuộc sống), ta đã biết:

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Với n  {1; 2: 3; 4; 5}, trong khai triển của mỗi nhị thức (a + b)n:

a) Có bao nhiêu số hạng?

b) Tổng số mũ của a và b trong mỗi số hạng bằng bao nhiêu?

c) Số mũ của a và b thay đổi thế nào khi chuyển từ số hạng này đến số hạng tiếp theo, tính từ trái sang phải?

Lời giải:

a) Có n + 1 số hạng, số hạng đầu tiên là an và số hạng cuối cùng là bn.

b) Tổng số mũ của a và b trong mỗi số hạng đều bằng n.

c) Số mũ của a giảm 1 đơn vị và số mũ của b tăng 1 đơn vị khi chuyền từ số hạng này đến số hạng tiếp theo, tính từ trái sang phải.

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

HĐ2 trang 33 Chuyên đề Toán 10: Tam giác Pascal. Viết các hệ số của khai triển (a + b)n với một số giá trị đầu tiên của n ....

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá