Giải các hệ phương trình sau bằng phương pháp Gauss

286

Với giải Bài 2 trang 24 Chuyên đề Toán 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chuyên đề 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài tập cuối chuyên đề 1

Bài 2 trang 24 Chuyên đề Toán 10: Giải các hệ phương trình sau bằng phương pháp Gauss:

a) x-2y+z=3-y+z=2y+2z=1;

b) 3x-2y-4z=34x+6y-z=17x+2y=5

c)x+y+z=13x-y-z=4x+5y+5z=-1

Lời giải:

a) x-2y+z=3-y+z=2y+2z=1x-2y+z=3-y+z=23z=3x-2y+z=3-y+1=2z=1x-2.(-1)+1=3y=-1z=1

x=0y=-1z=1

Vậy hệ phương trình đã cho có nghiệm duy nhất (0; –1; 1).

b)3x-2y-4z = 34x+6y-z     =17x+2y                =53x-2y-4z = 3-13x-26y      =-65x+2y                =53x-2y-4z = 3x+2y                =5x+2y                =53x-2y-4z = 3x+2y                =5

Từ phương trình thứ hai ta có x = –2y + 5, thay vào phương trình thứ nhất ta được z = –2y + 3. Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 5; y; –2y + 3).

c) x+y+z=13x-y-z=4x+5y+5z=-1x+y+z=14y+4z=-1x+5y+5z=-1x+y+z=14y+4z=-1-4y-4z=2x+y+z=14y+4z=-10y+0z=1

Vì phương trình thứ ba của hệ vô nghiệm nên hệ đã cho vô nghiệm.

Xem thêm các bài giải Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1 trang 24 Chuyên đề Toán 10: Trong các hệ phương trình sau, hệ nào là hệ phương trình bậc nhất ba ẩn? Mỗi bộ ba số (–1; 0; 1), có là nghiệm của các hệ phương trình bậc nhất ba ẩn đó không?

Bài 3 trang 24 Chuyên đề Toán 10: Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:

Bài 4 trang 24 Chuyên đề Toán 10: Một viên lam ngọc và hai viên hoàng ngọc trị giá gấp 3 lần một viên ngọc bích. Còn bảy viên lam ngọc và một viên hoàng ngọc trị giá gấp 8 lần một viên ngọc bích. Biết giá tiền của bộ ba viên ngọc này là 270 triệu đồng. Tính giá tiền mỗi viên ngọc.

Bài 5 trang 24 Chuyên đề Toán 10: Bốn ngư dân góp vốn mua chung một chiếc thuyền. Số tiền người đầu tiên đóng góp bằng một nửa tổng số tiền của những người còn lại. Người thứ hai đóng góp bằng  tổng số tiền của những người còn lại. Người thứ ba đóng góp bằng  tổng số tiền của những người còn lại. Người thứ tư đóng góp 130 triệu đồng. Chiếc thuyền này được mua giá bao nhiêu?

Bài 6 trang 24 Chuyên đề Toán 10: Một quỹ đầu tư dự kiến dành khoản tiền 1,2 tỉ đồng để đầu tư vào cồ phiếu. Để thấy được mức độ rủi ro, các cổ phiếu được phân thành ba loại: rủi ro cao, rủi ro trung bình và rủi ro thấp. Ban Giám đốc của quỹ ước tính các cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp sẽ có lợi nhuận hằng năm lần lượt là 15%, 10% và 6%.

Bài 7 trang 24 Chuyên đề Toán 10: Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3,4,5 và tổng số tế bào con tạo ra là 216. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại C bằng trung bình cộng số tế bào loại A và loại B. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại B được tạo ra ít hơn số tế bào con loại C được tạo ra là 40. Tính số tế bào con mỗi loại lúc ban đầu.

Bài 8 trang 25 Chuyên đề Toán 10: Cho sơ đồ mạch điện như Hình 1. Biết rằng R = R1 = R2 = 5 Ω. Hãy tính các cường độ dòng điện I, I1 và I2

Bài 9 trang 25 Chuyên đề Toán 10: Cho A, B và C là ba dung dịch cùng loại acid có nồng độ khác nhau. Biết rằng nếu trộn ba dung dịch mỗi loại 100 ml thì được dung dịch nồng độ 0,4 M (mol/lít); nếu trộn 100 ml dung dịch A với 200 ml dung dịch B thì được dung dịch nồng độ 0,6 M; nếu trộn 100 ml dung dịch B với 200 ml dung dịch C thì được dung dịch nồng độ 0,3 M. Mỗi dung dịch A, B và C có nồng độ bao nhiêu?

Bài 10 trang 25 Chuyên đề Toán 10: Xăng sinh học E5 là hỗn hợp xăng không chì truyền thống và cồn sinh học (bio – ethanol). Trong loại xăng này chứa 5% cồn sinh học. Khi động cơ đốt cháy lượng cồn trên thì xảy ra phản ứng hoá học

Bài 11 trang 25 Chuyên đề Toán 10: Trên thị trường hàng hoá có ba loại sản phẩm A, B, C với giá mỗi tấn tương ứng là x, y, z (đơn vị: triệu đồng, x ≥ 0, y ≥ 0, z ≥ 0). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng dưới đây:

Bài 12 trang 25 Chuyên đề Toán 10: Giải bài toán cổ sau:

Đánh giá

0

0 đánh giá