Với giải Bài 5 trang 84 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài tập cuối Chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán 7 Bài tập cuối Chương 8
Bài 5 trang 84 Toán lớp 7: Cho tam giác nhọn ABC (AB < AC), vẽ đường cao AH. Đường trung trực của BC cắt AC tại M, cắt BC tại N.
a) Chứng minh rằng
b) Kẻ (I ∈ AH), gọi K là giao điểm của AH và BM. Chứng minh rằng I là trung điểm của AK.
Phương pháp giải
a) Ta xét tam giác BMC cân tại M nên
Nên
b) Ta chứng minh I là trung điểm của AK do (g-c-g)
Lời giải
a) Xét tam giác BMC cân tại M (Do M thuộc đường trung trực của BC nên MB = MC) có : (góc tương ứng)
Mà và
b) Ta có MN⫽AH (do cùng vuông góc với BC)
(2 góc so le trong)
Mà ( chứng minh a)
( do cùng =)
Xét và có :
IM cạnh chung
(cạnh góc vuông-góc nhọn)
AI = IK (cạnh tương ứng)
I là trung điểm AK
Xem thêm các bài giải Toán 7 Chân trời sáng tạo, chi tiết khác:
Bài 1 trang 84 Toán lớp 7: Cho tam giác ABC cân tại A (). Hai đường cao BE và CF cắt nhau tại H.
Bài 8 trang 84 Toán lớp 7: Ở Hình 1, cho biết AE = AF và . Chứng minh AH là đường trung trực của BC.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.