Với giải Bài 6 trang 84 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài tập cuối Chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán 7 Bài tập cuối Chương 8
Bài 6 trang 84 Toán lớp 7: Cho tam giác nhọn MNP. Các trung tuyến ME và NF cắt nhau tại G. Trên tia đối của tia FN lấy điểm D sao cho FN = FD.
a) Chứng minh rằng MFN = PFD
b) Trên đoạn thẳng FD lấy điểm H sao cho F là trung điểm của GH. Gọi K là trung điểm của GK. Chứng minh rằng ba điểm M, H, K thẳng hàng.
Phương pháp giải
a) Chứng minh MFN = PFD theo trường họp cạnh góc cạnh
Sử dụng tính chất của điểm đối xứng qua một điểm, trung điểm của 1 đoạn thẳng và 2 góc đối đỉnh
b) Chứng minh H là trọng tâm của tam giác MPD sau đó dựa vào tính chất ta suy ra M, H, K thẳng hàng
Lời giải
a) Vì N đối xứng với D qua F (theo giả thiết)
Nên NF = DF (1)
Vì F là trung điểm của MP (theo giả thiết)
Nên MF = PF (2)
Vì góc NFM và góc PFD ở vị trí đối đỉnh nên 2 góc bằng nhau (3)
Từ (1), (2) và (3) MFN = PFD (c-g-c)
b) Xét tam giác MPD có :
F là trung điểm MD,
K là trung điểm DP (theo giả thiết)
Mà 2 đường trung tuyến của tam giác MPD là DF và MK cắt nhau tại H
H là trọng tâm MPD
M, H, K thẳng hàng
Xem thêm các bài giải Toán 7 Chân trời sáng tạo, chi tiết khác:
Bài 1 trang 84 Toán lớp 7: Cho tam giác ABC cân tại A (). Hai đường cao BE và CF cắt nhau tại H.
Bài 8 trang 84 Toán lớp 7: Ở Hình 1, cho biết AE = AF và . Chứng minh AH là đường trung trực của BC.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.