Với giải Bài 9 trang 84 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài tập cuối Chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán 7 Bài tập cuối Chương 8
Bài 9 trang 84 Toán lớp 7: Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.
a) Chứng minh rằng tam giác MBE cân.
b) Chứng minh rằng
c) Chứng minh rằng
Phương pháp giải
a)Ta chứng minh BME có 2 cạnh bên hoặc 2 góc đáy bằng nhau thông qua việc chứng minh 2 tam giác EHB và MHB bằng nhau.
b)Ta chứng minh do cùng =
c)Ta chứng minh
Lời giải
a)Xét BHE và BHM có :
BH là cạnh chung
EH = HM (do M đối xứng E qua H)
BHE = BHM (c-g-c)
BM = BE (cạnh tương ứng)
và (góc tương ứng) (1)
BEM cân tại B (2 cạnh bên bằng nhau)
b)Xét BHM vuông tại H
Xét AMC vuông tại A
Mà (2 góc đối đỉnh)
(2)
Từ (1) và (2)
c)Vì (do CM là phân giác góc C)
(cùng bằng ) (3)
Xét EHB vuông tại H có (4)
Từ (3) và (4)
Xem thêm các bài giải Toán 7 Chân trời sáng tạo, chi tiết khác:
Bài 1 trang 84 Toán lớp 7: Cho tam giác ABC cân tại A (). Hai đường cao BE và CF cắt nhau tại H.
Bài 8 trang 84 Toán lớp 7: Ở Hình 1, cho biết AE = AF và . Chứng minh AH là đường trung trực của BC.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.