Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho

807

Với giải Hoạt động 5 trang 52 Chuyên đề Toán 10 Cánh diều  chi tiết trong Bài 6: Hypebol; giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:

Giải bài tập Chuyên đề Toán lớp 10 Bài 6: Hypebol

Hoạt động 5 trang 52 Chuyên đề Toán 10: Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho |MF1 – MF2| = 2a, ở đó F1F2 = 2c với c > a > 0. Ta chọn hệ trục toạ độ Oxy có gốc là trung điểm của đoạn thẳng F1F2. Trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 16). Khi đó F1(c; 0), F2(c; 0) là các tiêu điểm của (H).

Trong mặt phẳng, xét đường hypebol (H) là tập hợp các điểm M sao cho |MF1 - MF2| = 2a (ảnh 1)

Với mỗi điểm M(x; y) thuộc đường hypebol (H), chứng minh:

a) MF12 = x2 + 2cx + c2 + y2;

b) MF22 = x2 – 2cx + c2 + y2;

c) MF12 – MF22 = 4cx.

Lời giải:

a) MF12 = [x – (– c)]2 + (y – 0)2 = (x + c)2 + y2 = x2 + 2cx + c2 + y2.

b) MF22 = (x – c)2 + (y – 0)2 = x2 – 2cx + c2 + y2.

c) MF12 – MF22 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.

 

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá