Với Giải SBT Toán 7 Bài 3 trang 63 trong Bài 8: Tính chất ba đường cao của một tam giác Sách bài tập Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7.
Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD
Bài 3 trang 63 sách bài tập Toán 7: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD. Chứng minh góc EAF vuông.
Lời giải:
Vì tam giác ABC cân tại A nên AB = AC.
Mà AB = AD (vì A là trung điểm của BD).
Suy ra AC = AD = AB.
Xét ΔAEB và ΔAEC có:
,
Cạnh AE là cạnh chung,
AB = AC (chứng minh trên).
Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Xét ΔACF và ΔADF có:
,
Cạnh AF là cạnh chung,
AC = AD (chứng minh trên).
Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Ta có
Mà , (chứng minh trên).
Suy ra
Hay
Do đó .
Vậy góc EAF vuông.
Xem thêm lời giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 7: Tính chất ba đường trung tuyến của một tam giác
Bài 9: Tính chất ba đường phân giác của tam giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.