Khai triển (z^2+1+1/z)^4

401

Với giải Câu hỏi 8.17 trang 57 SBT Toán 10 Tập 2 Kết nối tri thức chi tiết trong Bài 25: Nhị thức Newton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Khai triển (z^2+1+1/z)^4

Bài 8.17 trang 57 SBT Toán 10 Tập 2: Khai triển z2+1+1z4.

Lời giải:

Trước hết, ta sử dụng công thức khai triển của (a + b)4 với a = z2 + 1 và b=1z.

Sau đó, ta sử dụng các công thức khai triển của (a + b)4, (a + b)3, (a + b)2 với a = z2, b = 1 để có:

z2+14

=C40.(z2)4+C41.(z2)3.1+C42.(z2)2.12+C43.z2.13+C44.14

= z8 + 4z6 + 6z4 + 4z2 + 1

z2+13=C30.(z2)3+C31.(z2)2.1+C32.z2.12+C33.13

= z6 + 3z4 + 3z2 + 1

(z2 + 1)2 = z4 + 2z2 + 1

Vậy ta có:

Khai triển trang 57 SBT Toán lớp 10 Tập 2 Kết nối tri thức

Đánh giá

0

0 đánh giá