SBT Toán 10 Kết nối tri thức Bài 25: Nhị thức Newton

570

Lời giải bài tập SBT Toán 10 Bài 25: Nhịt thức Newton sách Kết nối tri thức ngắn gọn, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi trong SBT Toán 10 Bài 25 từ đó học tốt môn Toán 10.

SBT Toán 10 Kết nối tri thức Bài 25: Nhị thức Newton

Bài 8.13 trang 57 SBT Toán 10 Tập 2: Khai triển các đa thức a) (x – 2)4;

b) (x + 2)5;

c) (2x + 3y)4;

d) (2x – y)5.

Lời giải:

a)

(x – 2)4 = [x + (– 2)4]

= C40.x4+C41.x3.(-2)+C42.x2.(-2)2+C43.x.(-2)3+C44.(-2)4

= 1.x4 + 4.x3.(–2) + 6.x2.4 + 4.x.(–8) + 1.16

= x4 – 8x3 + 24x2 – 32x + 16.

b)

x+25

=C50.x5+C51.x4.2+C52.x3.22+C53.x2.23+C54.x.24+C55.25

= 1.x5 + 5.x.2 + 10.x3.4 + 10.x2.8 + 5.x.16 + 1.32

= x5 + 10x4 + 40x3 + 80x2 + 80x + 32.

c)

(2x + 3y)4

= C40.(2x)4+C41.(2x)3.3y+C42.(2x)2.(3y)2+C43.2x.(3y)3+C44.(3y)4

= 1.16x4 + 4.8x3.3y + 6.4x2.9y2 + 4.2x.27y3 + 1.81y4

= 16x4 + 96x3y + 216x2y + 216xy3 + 81y4.

d)

(2x – y)5 = [2x + (– y)5]

Khai triển các đa thức: a) (x – 2)^4; b) (x + 2)^5

= 1.32x5 + 5.16x.(–y) + 10.8x3.y2 + 10.4x2.(–y)3 + 5.2x.y4 + 1.(–y)5

= 32x5 – 80x4y + 80x3y2 – 40x2y3 + 10xy4 – y5.

Bài 8.14 trang 57 SBT Toán 10 Tập 2: Trong khai triển của (5x – 2)5, số mũ của x được sắp xếp theo luỹ thừa tăng dần, hãy tìm hạng tử thứ hai.

Lời giải:

Áp dụng công thức khai triển của (a + b)5 với a = 5x, b = –2, ta có:

(5x – 2)5

Trong khai triển của (5x – 2)^5, số mũ của x được sắp xếp theo luỹ thừa tăng dần

= 1 . 3 125x5 + 5 . 625x.(–2) + 10 . 125x3.4 + 10 . 25x2.(–8) + 5 . 5x.16 + 1.(–32)

= 3 125x5 – 6 250x4 + 5 000x3 – 2 000x2 + 400x – 32

= – 32 + 400x – 2 000x2 + 5 000x3 – 6 250x4 + 3 125x5

Vậy, số hạng thứ hai trong khai triển theo số mũ tăng dần của x là 400x.

Bài 8.15 trang 57 SBT Toán 10 Tập 2: Hãy sử dụng ba số hạng đầu tiên trong khai triển của (1 + 0,03)4 để tính giá trị gần đúng của 1,034. Xác định sai số tuyệt đối.

Lời giải:

Ta có:

1,034 = (1 + 0,03)4 = 14 + 4.13.0,03 + 6.12­­.(0,03)2 + …

= 1 + 0,12 + 0,0054 + … ≈ 1,1254

Mặt khác, ta tính được giá trị đúng, chẳng hạn bằng máy tính,

1,034 = 1,12550881.

Như vậy, sai số tuyệt đối của của giá trị gần đúng nhận được so với giá trị đúng là:

|1,1254 – 1,12550881| = 0,00010881.

Bài 8.16 trang 57 SBT Toán 10 Tập 2: Xác định hạng tử không chứa x trong khai triển của x+2x4.

Lời giải:

Ta có:

x+2x4

=C40.x4+C41.x3.2x+C42.x22x2+C43.x.2x3+C44.2x4

=x4+4x3.2x+6x2.2x2+4x.2x3+2x4

=x4+8x2+24+32x2+16x4

Vậy, hạng tử không chứa x là 24.

Bài 8.17 trang 57 SBT Toán 10 Tập 2: Khai triển z2+1+1z4.

Lời giải:

Trước hết, ta sử dụng công thức khai triển của (a + b)4 với a = z2 + 1 và b=1z.

Sau đó, ta sử dụng các công thức khai triển của (a + b)4, (a + b)3, (a + b)2 với a = z2, b = 1 để có:

z2+14

=C40.(z2)4+C41.(z2)3.1+C42.(z2)2.12+C43.z2.13+C44.14

= z8 + 4z6 + 6z4 + 4z2 + 1

z2+13=C30.(z2)3+C31.(z2)2.1+C32.z2.12+C33.13

= z6 + 3z4 + 3z2 + 1

(z2 + 1)2 = z4 + 2z2 + 1

Vậy ta có:

Khai triển trang 57 SBT Toán lớp 10 Tập 2 Kết nối tri thức

Đánh giá

0

0 đánh giá