SBT Toán 10 Kết nối tri thức trang 13: Bài tập cuối chương 1

203

Với giải Câu hỏi trang 13 SBT Toán 10 Tập 1 Kết nối tri thức trong Bài tập cuối chương 1 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Kết nối tri thức trang 13: Bài tập cuối chương 1

Bài 1.23 trang 13 SBT Toán 10 Tập 1: Trong các tập hợp sau, tập hợp nào là tập rỗng?

A. M = {x  ℕ | x2 - 16 = 0}.

B. N = {x  ℝ | x2 + 2x + 5 = 0}.

C. P = {x  ℝ | x2 - 15 = 0}.

D. Q = {x  ℝ | x2 + 3x - 4 = 0}.

Lời giải:

Ta có x2 + 2x + 5 = x2 + 2x + 1 + 4 = (x + 1)2 + 4.

(x + 1)2 ≥ 0 ∀x  ℝ suy ra (x + 1)2 + 4 > 0 ∀x  ℝ.

Do đó không tồn tại x  ℝ để x2 + 2x + 5 = 0.

Bài 1.24 trang 13 SBT Toán 10 Tập 1:Lớp 10A có 10 học sinh giỏi môn Toán, 15 học sinh giỏi môn Vật lí, 8 học sinh giỏi cả môn Toán và Vật lí. Số học sinh giỏi ít nhất một môn (Toán hoặc Vật lí) của lớp 10A là

A. 17.

B. 25.

C. 18.

D. 23.

Lời giải:

Đáp án đúng là: A

Tổng số học sinh giỏi Toán hoặc Vật lí là: 10 + 15 = 25 (học sinh).

Trong 25 học sinh trên thì có 8 học sinh giỏi cả môn Toán và Vật lí nên số học sinh giỏi ít nhất một môn (Toán hoặc Vật lí) của lớp 10A là: 25 - 8 = 17 (học sinh).

Bài 1.25 trang 13 SBT Toán 10 Tập 1Cho hai tập hợp M = {x  ℤ | x2 - 3x - 4 = 0} và N = {a; -1}. Với giá trị nào của a thì M = N?

A. a = 2.

B. a = 4.

C. a = 3.

D. a = -1 hoặc a = 4.

Lời giải:

Đáp án đúng là: B

Ta có x2 - 3x - 4 = 0

 x2 - 4x + x - 4 = 0

 x(x - 4) + (x - 4) = 0

 (x - 4)(x + 1) = 0

Cho hai tập hợp Bài 1.25 trang 13 sách bài tập Toán lớp 10 Tập 1

Do N đã có phần tử -1 nên a = 4 thì M = N.

Bài 1.26 trang 13 SBT Toán 10 Tập 1: Trong các mệnh đề sau, mệnh đề nào sai?

A. ℕ  [0; +).

B. {-2; 3}  [-2; 3].

C. [3; 7] = {3; 4; 5; 6; 7}.

D. ∅ ℚ.

Lời giải:

 
 

Đáp án đúng là: C

[3; 7] là tập hợp các số thực lớn hơn hoặc bằng 3 và nhỏ hơn hoặc bằng 7.

Mà 3; 4; 5; 6; 7 chỉ là các số tự nhiên lớn hơn hoặc bằng 3 và nhỏ hơn hoặc bằng 7.

Bài 1.27 trang 13 SBT Toán 10 Tập 1Cho hai tập hợp A = (-; -1] và B = (-2; 4]. Tìm mệnh đề sai

A. A ∩ B = (-2; -1].

B. A \ B = (-; -2).

 
 

C. A ∪ B = (-; 4].

D. B \ A = (-1; 4].

Lời giải:

Đáp án đúng là: B

A \ B = (-; -1] \ (-2; 4] = (-; -2] ∪ (-2; -1] \ (-2; 4) = (-; -2].

Bài 1.28 trang 13 SBT Toán 10 Tập 1:Trong các mệnh đề sau, mệnh đề nào sai?

A. Tam giác ABC là tam giác đều  Tam giác ABC cân.

B. Tam giác ABC là tam giác đều  Tam giác ABC có ba góc bằng 60°.

C. Tam giác ABC là tam giác đều  Tam giác ABC có ba cạnh bằng nhau.

D. Tam giác ABC là tam giác đều  Tam giác ABC cân và có một góc 60°

Lời giải:

Đáp án đúng là: A

Mệnh đề “Tam giác ABC là tam giác đều Tam giác ABC cân” là một mệnh đề đúng, tuy nhiên mệnh đề “Tam giác ABC cân Tam giác ABC đều” là một mệnh đề sai nên mệnh đề “Tam giác ABC là tam giác đều  Tam giác ABC cân” là một mệnh đề sai.

Bài 1.29 trang 13 SBT Toán 10 Tập 1: Mệnh đề phủ định của mệnh đề: “Số 12 chia hết cho 4 và 3 là”

A. Số 12 chia hết cho 4 hoặc chia hết cho 3.

B. Số 12 không chia hết cho 4 và không chia hết cho 3.

C. Số 12 không chia hết cho 4 hoặc không chia hết cho 3.

D. Số 12 không chia hết cho 4 và chia hết cho 3.

Lời giải:

Đáp án đúng là: C

Phủ định của “chia hết” là “không chia hết”; phủ định của “và” là “hoặc”.

Bài 1.30 trang 13 SBT Toán 10 Tập 1Mệnh đề “∃x  ℝ, x2 = 15” được phát biểu là

A. Bình phương của mỗi số thực bằng 15.

B. Có ít nhất một số thực mà bình phương của nó bằng 15.

C. Chỉ có một số thực mà bình phương của nó bằng 15.

D. Nếu x là một số thực thì x2 = 15.

Lời giải:

Đáp án đúng là: B

Mệnh đề “∃x  ℝ, x2 = 15” là “tồn tại số thực sao cho bình phương của nó bằng 15” hay “có ít nhất một số thực mà bình phương của nó bằng 15”.

Đánh giá

0

0 đánh giá