Với giải Bài 15 trang 58 Toán 11 Tập 1 Cánh Diều chi tiết trong Bài tập cuối chương 2 trang 57 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Bài 15 trang 58 Toán 11 Tập 1 | Cánh Diều Giải Toán lớp 11
Bài 15 trang 58 Toán 11 Tập 1: Cho hình vuông C1 có cạnh bằng 4. Người ta chia mỗi cạnh hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (Hình 4). Từ hình vuông C2 lại làm tiếp tục như trên để có hình vuông C3. Cứ tiếp tục quá trình như trên, ta nhận được dãy các hình vuông C1, C2, C3, ..., Cn, ... Gọi an là độ dài cạnh hình vuông Cn. Chứng minh dãy số (an) là cấp số nhân.
Lời giải:
Độ dài cạnh của hình vuông đầu tiên là: a1 = 4.
Độ dài cạnh của hình vuông thứ n là: an.
Độ dài cạnh của hình vuông thứ n + 1 là: an+1 = .
Suy ra:
Vậy (an) là một cấp số nhân với số hạng đầu a1 = 4 và công bội q = .
Xem thêm các bài giải Toán 11 Cánh Diều hay, chi tiết khác:
Bài 2 trang 57 Toán 11 Tập 1: Trong các dãy số sau, dãy số nào là cấp số cộng?
Bài 4 trang 57 Toán 11 Tập 1: Tổng 100 số tự nhiên lẻ đầu tiên tính từ 1 là:
Bài 7 trang 57 Toán 11 Tập 1: Trong các dãy số (un) sau đây, dãy số nào là dãy số tăng?
Xem thêm các bài giải sách giáo khoa Toán 11 Cánh Dều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.