Hoạt động 4 trang 102, 103 Toán 8 Tập 1 | Cánh Diều Giải Toán lớp 8

234

Với giải Hoạt động 4 trang 102, 103 Toán 8 Tập 1 Cánh Diều chi tiết trong Bài 3: Hình thang cân giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Hoạt động 4 trang 102, 103 Toán 8 Tập 1 | Cánh Diều Giải Toán lớp 8

Hoạt động 4 trang 102, 103 Toán 8 Tập 1: Quan sát hình thang ABCD (AB // CD, AB < CD) có hai đường chéo AC và BD bằng nhau. Kẻ BE song song với AC (E thuộc đường thẳng CD) (Hình 27).

a) Hai tam giác ABC và ECB có bằng nhau hay không?

b) So sánh các cặp góc: ^BED và ^BDE và ^ACD và ^BED.

c) Hai tam giác ACD và BDC có bằng nhau hay không? Từ đó, hãy so sánh ^ADC và ^BCD.

d) ABCD có phải là hình thang cân hay không?

Toán 8 Bài 3 (Cánh diều): Hình thang cân (ảnh 6)

Lời giải:

a) Do AB // CD hay AB // CE nên ^ABC=^ECB (so le trong).

Do BE // AC nên ^ACB=^EBC (so le trong).

Xét ΔABC và ΔECB có:

^ABC=^ECB (chứng minh trên);

BC là cạnh chung;

^ACB=^EBC (chứng minh trên).

Do đó ΔABC = ΔECB (g.c.g).

b) Do ΔABC = ΔECB (theo câu a) nên AC = EB (hai cạnh tương ứng)

Mà AC = BD (giả thiết)

Suy ra BD = BE nên tam giác BDE là tam giác cân tại B.

Suy ra ^BDE=^BED (tính chất tam giác cân).

Do BE // AC nên ^ACD=^BED (đồng vị).

c) Ta có ^BDE=^BED và ^ACD=^BED (theo câu b) nên ^BDE=^ACD(=^BED).

Xét ΔACD và ΔBDC có:

DC là cạnh chung;

^BDE=^ACD (chứng minh trên);

AC = BD (giả thiết)

Do đó ΔACD = ΔBDC (c.g.c)

Suy ra ^ADC=^BCD (hai góc tương ứng).

d) Hình thang ABCD có ^ADC^BCD cùng kề với đáy DC và ^ADC=^BCD nên ABCD là hình thang cân.

Đánh giá

0

0 đánh giá