Giải Toán 11 trang 42 Tập 1 (Kết nối tri thức)

216

Với giải SGK Toán 11 Kết nối tri thức trang 42 chi tiết trong Bài 5: Dãy số Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 42 Tập 1 (Kết nối tri thức)

Mở đầu trang 42 Toán 11 Tập 1Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân Pn (nghìn người) của thành phố đó sau n năm, kể từ năm 2020, được tính bằng công thức Pn = 500(1 + 0,02)n. Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

Lời giải:

Sau bài học này ta sẽ giải quyết được bài toán trên như sau:

Ta có: n = 2030 – 2020 = 10.

Vậy số dân của thành phố đó vào năm 2030 sẽ là

P10 = 500 . (1 + 0,02)10 ≈ 609 (nghìn người).

1. Định nghĩa dãy số

HĐ1 trang 42 Toán 11 Tập 1Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.

Lời giải:

Năm số chính phương đầu theo thứ tự tăng dần là: 0; 1; 4; 9; 16.

Số chính phương thứ nhất là u1 = 02 = 0

Số chính phương thứ hai là u2 = 12 = 1

Số chính phương thứ ba là u3 = 22 = 4

Số chính phương thứ tư là u4 = 32 = 9

Số chính phương thứ năm là u5 = 42 = 16

Tiếp tục như trên, ta dự đoán được công thức tính số chính phương thứ n là un = (n – 1)2 với n ∈ ℕ*.

Đánh giá

0

0 đánh giá