Giải Toán 11 trang 43 Tập 1 (Kết nối tri thức)

246

Với giải SGK Toán 11 Kết nối tri thức trang 43 chi tiết trong Bài 5: Dãy số Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 43 Tập 1 (Kết nối tri thức)

HĐ2 trang 43 Toán 11 Tập 1: a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.

b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.

Lời giải:

a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là

0; 1; 4; 9; 16; 25; 36; 49.

b) Ta có: un = (n – 1)2 với n ∈ ℕ* và n ≤ 8.

Luyện tập 1 trang 43 Toán 11 Tập 1: a) Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Xác định số hạng tổng quát của dãy số.

b) Viết dãy số hữu hạn gồm năm số hạng đầu của dãy số trong câu a. Xác định số hạng đầu và số hạng cuối của dãy số hữu hạn này.

Lời giải:

a) Xét số tự nhiên a khác 0, ta có a chia cho 5 dư 1, khi đó tồn tại số tự nhiên q khác 0 để a = 5q + 1.

Xét dãy số gồm tất cả các số tự nhiên chia cho 5 dư 1 theo thứ tự tăng dần. Khi đó, số hạng tổng quát của dãy số là un = 5n + 1 (n ∈ ℕ*).

b) Dãy gồm năm số hạng đầu của dãy số trong câu a là: 6; 11; 16; 21; 26.

Số hạng đầu của dãy là u1 = 6, số hạng cuối của dãy là u5 = 26.

2. Các cách cho một dãy số

HĐ3 trang 43 Toán 11 Tập 1: Xét dãy số (un) gồm tất cả các số nguyên dương chia hết cho 5:

5, 10, 15, 20, 25, 30, ...

a) Viết công thức số hạng tổng quát un của dãy số.

b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi.

Lời giải:

a) Số hạng tổng quát của dãy số là un = 5n (n ∈ ℕ*).

b) Số hạng đầu của dãy số là u1 = 5.

Công thức tính số hạng thứ n theo số hạng thứ n – 1 là un = u­n – 1 + 5 (n ∈ ℕ*, n > 1).

Đánh giá

0

0 đánh giá