Bài 2.3 trang 46 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

329

Với giải Bài 2.3 trang 46 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 5: Dãy số Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 2.3 trang 46 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

Bài 2.3 trang 46 Toán 11 Tập 1Xét tính tăng, giảm của dãy số (un), biết:

a) un = 2n – 1;

b) un = – 3n + 2;

c) un=1n12n .

Lời giải:

a) Ta có: un + 1 = 2(n + 1) – 1 = 2n + 2 – 1 = 2n + 1

Xét hiệu un + 1 – un = (2n + 1) – (2n – 1) = 2 > 0, tức là un + 1 > un , ∀ n ∈ ℕ*.

Vậy (un) là dãy số tăng.

b) Ta có: un + 1 = – 3(n + 1) + 2 = – 3n – 3 + 2 = – 3n – 1

Xét hiệu un + 1 – un = (– 3n – 1) – (– 3n + 2) = – 3 < 0, tức là un + 1 < u, ∀ n ∈ ℕ*.

Vậy (un) là dãy số giảm.

c) un=1n12n

Nhận xét thấy: u1=11121=12>0 ; u2=12122=14<0 ;

u3=13123=18>0u4=14124=116<0 ; ...

Vậy dãy số (un) không tăng, cũng không giảm.

Đánh giá

0

0 đánh giá