Bài 2.30 trang 57 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

290

Với giải Bài 2.30 trang 57 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài tập cuối chương 2 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 2.30 trang 57 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11

Bài 2.30 trang 57 Toán 11 Tập 1Tìm ba số, biết theo thứ tự chúng lập thành cấp số cộng và có tổng bằng 21, và nếu lần lượt cộng thêm các số 2; 3; 9 vào ba số đó thì được ba số lập thành một cấp số nhân.

Lời giải:

Giả sử 3 số cần tìm là x, y, z với x < y < z.

Ta có: x + y + z = 21 ⇒ x + z = 21 – y.

Theo Bài 2.29a, vì x, y, z lập thành một cấp số cộng nên y = x+z2.

Do đó, y=21y2. Từ đó suy ra y = 7.

Gọi d là công sai của cấp số cộng thì x = y – d = 7 – d và z = y + d = 7 + d.

Sau khi thêm các số 2; 3; 9 vào ba số x, y, z ta được ba số là x + 2, y + 3, z + 9 hay 9 – d, 10, 16 + d và theo đề bài thì 3 số này lập thành một cấp số nhân.

Áp dụng Bài 2.29b, ta có: (9 – d)(16 + d) = 102

⇔ 144 – 7d – d2 = 100

⇔ d2 + 7d – 44 = 0

Giải phương trình bậc hai trên ta được d = – 11 hoặc d = 4.

+) Với d = – 11, ta có cấp số cộng gồm 3 số 18, 7, – 4.

+) Với d = 4, ta có cấp số cộng gồm 3 số 3, 7, 11.

Vậy có hai bộ ba số cần tìm là (18, 7, – 4) và (3, 7, 11).

Đánh giá

0

0 đánh giá