Với giải Thực hành 1 trang 53 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Thực hành 1 trang 53 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11
Thực hành 1 trang 53 Toán 11 Tập 1: Chứng minh mỗi dãy số sau là cấp số cộng. Xác định công sai của mỗi cấp số cộng đó.
a) 3; 7; 11; 15; 19; 23.
b) Dãy số (un) với un = 9n – 9.
c) Dãy số (vn) với vn = an + b, trong đó a và b là các hằng số.
Lời giải:
a) Dãy số 3; 7; 11; 15; 19; 23 là cấp số cộng với công sai d = 4.
b) Ta có: u1 = 9.1 – 9 = 0.
un+1 = 9(n + 1) – 9 = 9n – 9 + 9 = un + 9, ∀n ∈ ℕ*.
Vậy dãy số (un) là cấp số cộng với số hạng đầu u1 = 0 và công sai d = – 3.
c) Ta có: v1 = a.1 + b = a + b.
vn+1 = a(n + 1) + b = an + a + b = an + b + a = vn + a, ∀n ∈ ℕ*.
Vậy dãy số (vn) là cấp số cộng với số hạng đầu v1 = a + b và công sai là d = a.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Vận dụng 2 trang 54 Toán 11 Tập 1: Tìm số hạng tổng quát của cấp số cộng (cn) có c4 = 80 và c6 = 40.
Thực hành 4 trang 55 Toán 11 Tập 1: a) Tính tổng 50 số tự nhiên chẵn đầu tiên.
Bài 1 trang 56 Toán 11 Tập 1: Chứng minh dãy số hữu hạn sau là cấp số cộng: 1; – 3; – 7; – 11; – 15.
Bài 3 trang 56 Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng đầu u1 = – 3 và công sai d = 2.
Bài 5 trang 56 Toán 11 Tập 1: Tìm số hạng đầu và công sai của cấp số cộng (un)
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.