Giải Toán 11 trang 100 Tập 1 (Chân trời sáng tạo)

119

Với giải SGK Toán 11 Chân trời sáng tạo trang 100 chi tiết trong Bài 2: Hai đường thẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 100 Tập 1 (Chân trời sáng tạo)

Hoạt động khởi động trang 100 Toán 11 Tập 1: Mô tả vị trí giữa các cặp đường thẳng a và b, b và c, c và d có trong hình bên

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 1)

Lời giải:

Sau khi học xong bài học này ta có thể trả lời được câu hỏi trên là:

+) Đường thẳng a và b là hai đường thẳng chéo nhau.

+) Đường thẳng b và c là hai đường thẳng song song.

+) Đường thẳng c và d là hai đường thẳng đồng phẳng.

1. Vị trí tương đối của hai đường thẳng trong không gian

Hoạt động khám phá 1 trang 100 Toán 11 Tập 1: a) Nêu các trường hợp có thể xảy ra đối với hai đường thẳng a, b cùng nằm trong một mặt phẳng.

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 2)

b) Cho tứ diện ABCD. Hai đường thẳng AB và CD có cùng nằm trong bất kì mặt phẳng nào không?

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 3)

Lời giải:

a) Các trường hợp có thể xảy ra đối với hai đường thẳng a và b cùng nằm trong một mặt phẳng là:

+) Hình 1a): Hai đường thẳng a và b trùng nhau.

+) Hình 1b): Hai đường thẳng a và b cắt nhau tại một điểm M.

+) Hình 1c): Hai đường thẳng a và b song song.

b) Hai đường thẳng AB và CD không cùng nằm trong một mặt phẳng nào cả.

Thực hành 1 trang 101 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Xét vị trí tương đối của các cặp đường thẳng sau đây:

a) AB và CD;

b) SA và SC;

c) SA và BC.

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 4)

Lời giải:

a) Trong mặt phẳng (ABCD) có nên AB // CD (vì ABCD là hình bình hành).

b) Trong mặt phẳng (SAC) có: SA cắt SC tại S.

c) Giả sử SA và BC cùng nằm trong mặt phẳng (P).

Suy ra (P) chưa bốn đỉnh của tứ diện SABC. Điều này là vô lí.

Vậy SA và BC không nằm trong bất kì mặt phẳng nào, suy ra SA và BC chéo nhau.

Đánh giá

0

0 đánh giá