Bài 2 trang 106 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11

309

Với giải Bài 2 trang 106 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Hai đường thẳng song song giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 2 trang 106 Toán 11 Tập 1 | Chân trời sáng tạo Giải Toán lớp 11

Bài 2 trang 106 Toán 11 Tập 1: Hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC). Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 17)

Lời giải:

+) Trong mặt phẳng (ABC) kéo dài AM cắt cạnh BC tại I.

Ta có: mp(d, SA) = mp(SAI)

Trong mặt phẳng (SAI) gọi N là giao điểm của SI và d mà SI ⊂ (SBC). Do đó giao điểm của đường thẳng d và (SBC) là N.

Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 18)

Gọi d’ là giao tuyến của hai mặt phẳng (SAC) và (CMN).

Ta có: Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 19)

 Toán 11 (Chân trời sáng tạo) Bài 2: Hai đường thẳng song song (ảnh 20)

Do đó C ∈ d’.

Vậy giao tuyến của hai mặt phẳng (SAC) và (CMN) là đường thẳng d’ đi qua C và song song với SA.

Đánh giá

0

0 đánh giá