Với giải SGK Toán 11 Chân trời sáng tạo trang 137 chi tiết trong Bài 2: Trung vị và tứ phân vị của mẫu số liệu ghép nhóm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 137 Tập 1 (Chân trời sáng tạo)
Thực hành 1 trang 137 Toán 11 Tập 1: Hãy trả lời câu hỏi ở hoạt động khởi động.
Lời giải:
Ta có bảng tần số ghép nhóm sau:
Chiều cao |
[170; 175) |
[175; 180) |
[180; 185) |
[185; 190) |
[190; 195) |
Giá trị đại diện |
172,5 |
177,5 |
182,5 |
187,5 |
192,5 |
Số vận động viên đội Sao La |
2 |
4 |
5 |
5 |
4 |
Số vận động viên đội Kim Ngưu |
2 |
3 |
4 |
10 |
1 |
+) Ước lượng chiều cao trung bình của các vận động viên đội Sao La là:
(cm).
Ước lượng chiều cao trung bình của các vận động viên đội Kim Ngưu là:
(cm).
Theo chiều cao trung bình thì cả hai đội có chiều cao như nhau.
+) Sau bài này ta sẽ tìm được cách tìm trung vị của mẫu số liệu trên như sau
- Trung vị của dãy số liệu chiều cao đội Sao La là:
Gọi x1; x2; x3; ...; x20 là chiều cao của 20 thành viên đội Sao La xếp theo thứ tự không giảm.
Số trung vị của mẫu số liệu trên là: (x10 + x11)
Từ bảng số liệu trên ta thấy x1; x2 ∈ [170; 175); x3; x4; x5; x6 ∈ [175; 180); x7; x8; x9; x10; x11 ∈ [180; 185).
Do đó (x10 + x11) sẽ thuộc nhóm [180; 185).
Khi đó số trung vị của số liệu đội Sao La là:
.
- Trung vị của dãy số liệu chiều cao đội Kim Ngưu là:
Gọi y1; y2; y3; ...; y20 là chiều cao của 20 thành viên đội Kim Ngưu xếp theo thứ tự không giảm.
Số trung vị của mẫu số liệu trên là: (y10 + y11)
Từ bảng số liệu trên ta thấy y1; y2 ∈ [170; 175); y3; y4; y5 ∈ [175; 180); y6; y7; x8; x9 ∈ [180; 185); x10; x11; ...; x19 ∈ [185; 190); x20 ∈ [190; 195).
Do đó (x10 + x11) sẽ thuộc nhóm [190; 195).
Khi đó số trung vị của số liệu đội Kim Ngưu là:
.
Dựa vào số trung vị ta thấy chiều cao của đội Kim Ngưu nhỉnh hơn chiều cao của đội Sao La.
Dựa vào bảng số liệu trên, ban tổ chứ muốn chọn ra khoảng 50% số vận động viên chạy nhanh nhất để tiếp tục thi vòng 2. Ban tổ chức nên chọn các vận động viên có thời gian chạy không quá bao nhiêu giây?
Lời giải:
Tổng số vận động viên n = 5 + 12 + 32 + 45 + 30 = 124.
Gọi x1; x2; ...; x124 lần lượt là thời gian chạy của 124 vận động viên tham gia hội thao được xếp theo thứ tự không giảm.
Ta có: x1; ...; x5 ∈ [21; 21,5), x6; ...; x17 ∈ [21,5; 22), x18; ...; x49 ∈ [22; 22,5), x50; ...; x94 ∈ [22,5; 23), x95; ...; x124 ∈ [23; 23,5).
Số trung vị của dãy số liệu là: (x62 + x63)
Mà x62; x63 ∈ [22,5; 23) do đó: Me = .
Vậy ban tổ chức nên chọn vận động viên có thời gian chạy không quá 22,6 giây.
2. Tứ phân vị
Huấn luyện viên muốn xác định nhóm gồm 25% các vận động viên có số giờ luyện tập cao nhất. Hỏi huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ bao nhiêu giờ trở lên vào nhóm này?
Lời giải:
Số vận động viên được khảo sát là: n = 3 + 8 + 12 + 12 + 4 = 39.
Gọi x1; x2; ...; x39 là thời gian luyện tập của 39 vận động viên được xếp theo thứ tự không giảm.
Ta có: x1; x2; x3 ∈ [0; 2), x4; ...; x11 ∈ [2; 4), x12; ...; x23 ∈ [4; 6), x24; ...; x35 ∈ [6; 8), x36; ...; x39 ∈ [8; 10).
Do đó đối với dãy số liệu x1; x2; ...; x39 thì:
- Tứ phân vị thứ nhất là x10 thuộc nhóm [2; 4);
- Tứ phân vị thứ hai là x20 thuộc nhóm [4; 6);
- Tứ phân vị thứ ba là x30 thuộc nhóm [6; 8).
Vậy huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ x30 (giờ) trở lên.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Thực hành 1 trang 137 Toán 11 Tập 1: Hãy trả lời câu hỏi ở hoạt động khởi động.
Xem thêm lời giải sách giáo khoa Toán 11 Chân trời sáng tạo hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.