Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

690

Toptailieu.vn xin giới thiệu Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11 Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo) hay, chi tiết | Lý thuyết Toán 11

A. Lý thuyết Giá trị lượng giác của một góc lượng giác

1. Giá trị lượng giác của góc lượng giác

 Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 1)

- Trên đường tròn, lấy điểm M(x;y) như hình vẽ. Khi đó

x=cosαy=sinα.

tanα=sinαcosα=yx(x0)

cotα=cosαsinα=xy(y0)

- Các giá trị sinα, cosα, tanα, cotα được gọi là các giá trị lượng giác của góc lượng giác α.

*Chú ý:

a, Trục tung là trục sin, trục hoành là trục côsin.

Trục As có gốc ở điểm A(1;0) và song song với trục sin là trục tang

Trục Bt có gốc ở điểm B(0;1) và song song với trục coossin gọi là trục côtang.

 Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 2)

b, sin a và cos a xác định với mọi a thuộc R

tanαxác định với các góc  απ2+kπ,kZ.

cotα xác định với các góc  αkπ,kZ.

c, Với mọi góc lượng giác α và số nguyên k, ta có:

sin(α+k2π)=sinαcos(α+k2π)=cosαtan(α+kπ)=tanαcot(α+kπ)=cotα

 

d, Bảng các giá trị lượng giác đặc biệt

 Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 3)

 
 
 
 
 
 

 

Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 4)

2. Tính giá trị lượng giác của một góc bằng máy tính cầm tay

- Lần lượt ấn các phím SHIFT -> MENU -> 2:

Để chọn đơn vị độ: ấn phím 1 (Degree).

Để chọn đơn vị radian: ấn phím 2 (Radian).

- Ấn các phím MENU 1 để vào chế độ tính toán.

3. Hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác

Lý thuyết Giá trị lượng giác của một góc lượng giác (Chân trời sáng tạo) Toán 11 (ảnh 1)

4. Giá trị lượng giác của các góc lượng giác có liên quan đặc biệt 

Hai góc đối nhau αvà α

sin(α)=sinαcos(α)=cosαtan(α)=tanαcot(α)=cotα

Hai góc bù nhau (αvà π-α)

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

Hai góc phụ nhau (αvà π2-α)

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

Hai góc hơn kém π(và π+α)

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotα

Lý thuyết Giá trị lượng giác của một góc lượng giác – Toán 11 Chân trời sáng tạo (ảnh 1)

B. Bài tập Giá trị lượng giác của một góc lượng giác

Bài 1. Rút gọn các biểu thức sau:

a) A = (1 – sin2α).cot2α + 1 – cot2α;

b) B=2cos2α1sinα+cosα.

Hướng dẫn giải

a) A = (1 – sin2α).cot2α + 1 – cot2α

⇔ A = cot2α – sin2α.cot2α + 1 – cot2α

⇔ A=1sin2α.cos2αsin2α=sin2α.

b) B=2cos2α1sinα+cosα

⇔ B=cos2αsin2αsinα+cosα

⇔ B = cos α – sin α.

Bài 2. Cho tanα=35. Tính: A=sinαcosαsin2αcos2α.

Hướng dẫn giải

Chia cả tử và mẫu của biểu thức A cho cos2α ta được:

A=sinαcosαsin2αcos2α=tanαtan2α1=1516.

Bài 3. Tính các giá trị lượng giác của góc α biết:

a) tanα=45 biết 3π2<α<2π.

b) cotα=197 biết π2<α<π.

Hướng dẫn giải

a) Do 3π2<α<2π nên sin α < 0, cos α > 0, cot α < 0.

Ta có:

cotα=1tanαcotα=54.

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giá trị lượng giác của một góc lượng giác

tanα=sinαcosαsinα=tanα.cosα=45.541=44141.

b) Do π2<α<π nên sin α > 0, cos α < 0, tan α < 0.

Ta có:

tanα=1cotαtanα=719.

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giá trị lượng giác của một góc lượng giác

Mà cos α < 0 ⇒ cosα=19410.

Lý thuyết Toán 11 Chân trời sáng tạo Bài 2: Giá trị lượng giác của một góc lượng giác

Xem thêm Lý thuyết các bài  Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Góc lượng giác

Lý thuyết Bài 3: Các công thức lượng giác

Lý thuyết Bài 4: Hàm số lượng giác và đồ thị

Lý thuyết Bài 5: Phương trình lượng giác cơ bản

Lý thuyết Bài 1: Dãy số

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá