Lý thuyết Tứ giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 8

441

Toptailieu.vn xin giới thiệu Lý thuyết Tứ giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Tứ giác (Cánh diều) hay, chi tiết | Lý thuyết Toán 8

Bài giải Bài 2: Tứ giác

A. Lý thuyết Tứ giác

1. Khái niệm 

Tứ giác ABCD là một hình gồm bốn đoạn thẳng AB, BC, CD và DA, trong đó bất kì hai đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Ví dụ:

 Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 1)

Đặc điểm

+ Có 4 đỉnh

+ Có 4 cạnh

Tứ giác lồi là tứ giác luôn nằm về một phía của đường thẳng chứa bất kỳ cạnh nào của tứ giác đó.

Ví dụ: ABCD là tứ giác lồi, EFGH không phải là tứ giác lồi.

2. Tính chất

+ Hai cạnh kề nhau là hai cạnh chung đỉnh.

+ Hai cạnh kề nhau tạo thành góc của tứ giác.

+ Hai cạnh đối nhau không chung đỉnh.

+ Hai đỉnh đối nhau là hai đỉnh không cùng nằm trên một cạnh.

+ Đường chéo là đoạn thẳng nối hai đỉnh đối nhau.

3. Định lí tổng các góc của một tứ giác

Tổng số đo các góc của một tứ giác bằng 360o.

Tứ giác ABCD, Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 2)Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 3)Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 4)Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 5) = 360o

Ví dụ:

Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 6)

Lý thuyết Tứ giác (Cánh diều) Toán 8 (ảnh 3) = 360o - 93o - 123o - 75o = 69o

B. Bài tập Tứ giác

Bài 1. Cho tam giác ABC vuông tại A. Biết ABAC=43  và BC = 20 cm. Tính độ dài các cạnh AB và AC.

Hướng dẫn giải

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A, ta có:

AB+ AC2  = BC= 20= 400.

Từ đề bài: ABAC=43  hay AB4=AC3  suy ra AB216=AC29 .

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

 

AB216=AC29=AB2+AC216+9=40025=16  

AB2  = 16.16 suy ra AB = 16 cm.

AC= 9 . 16 = 144 suy ra AC = 12 cm.

Vậy AB = 16 cm; AC = 12 cm.

Bài 2. Cho tam giác ABC vuông tại A, tính độ dài cạnh còn lại trong các trường hợp sau:

a) AB = 5 cm, AC = 12 cm;

b) AB= 3 cm, BC=12 cm ;

c) AB – AC = 7 cm, AB + AC = 17 cm.

Hướng dẫn giải

a) Do tam giác ABC vuông tại A nên áp dụng định lý Pythagore, ta có:

BC= AB+ AC2

Suy ra BC= 5+ 12= 25 + 144 = 169.

Do đó BC =169=13 (cm)

Vậy BC = 13 cm.

b) Áp dụng định lý Pythagore vào tam giác ABC vuông tại A, ta có:

BC= AB+ AC2

Suy ra AC2=BC2AB2=12232=1443=141

Do đó AC=141=11,87 (cm)

Vậy AC = 11,87 cm.

c) Theo bài ta có: AB – AC = 7 suy ra AB = AC + 7

Mặt khác, AB + AC = 17 suy ra AC + 7 + AC = 17

Hay 2AC = 17 – 7 = 10 suy ra AC = 5 cm và AB = 12 cm

Do tam giác ABC vuông tại A nên áp dụng định lý Pythagore, ta có:

BC= AB+ AC2

Suy ra BC= 5+ 12= 25 + 144 = 169.

Do đó BC =169=13 (cm) .

Vậy BC = 13 cm.

Bài 3. Cho hình vẽ sau. Tìm giá trị của a.

Lý thuyết Toán 8 Cánh diều Bài 1: Định lí Pythagore

Hướng dẫn giải

Áp dụng định lý Pythagore và tam giác ADE vuông tại A, ta có:

AD+ AE2  = DE2

AE2  = DE– AD2

 Suy ra AE = 4.

Suy ra AB = AE + EB = 4 + 4 = 8.

Áp dụng định lý Pythagore vào tam giác ABC vuông tại A, ta có:

AB+ AC2  = BC2

Suy ra BC= 8+ 6= 100 suy ra BC = 10 hay a = 10.

Vậy a = 10.

Xem thêm các bài lý thuyết Toán 8 Cánh diều hay, chi tiết khác:

Bài 1: Định lí Pythagore

Bài 3: Hình thang cân

Bài 4: Hình bình hành

Bài 5: Hình chữ nhật

Bài 6: Hình thoi

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá