Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Phương trình đường thẳng (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 10 từ đó học tốt môn Toán. Mời các bạn đón xem:
Phương pháp giải Phương trình đường thẳng (HAY NHẤT 2024)
A. Lí thuyết tổng hợp
1. Các vectơ của đường thẳng
+) Vectơ chỉ phương: Vectơ được gọi là vectơ chỉ phương của đường thẳng nếu và giá của song song hoặc trùng với .
+) Vectơ pháp tuyến: Vectơ được gọi là vectơ pháp tuyến của đường thẳng nếu và vuông góc với vectơ chỉ phương của .
+) Nhận xét:
- Nếu là một vectơ chỉ phương của đường thẳng thì k () cũng là một vectơ chỉ phương của .
- Nếu là một vectơ pháp tuyến của đường thẳng thì k () cũng là một vectơ pháp tuyến của .
- Một đường thẳng hoàn toàn được xác định nếu biết một điểm và một vectơ chỉ phương hoặc một vectơ pháp tuyến của đường thẳng đó.
- Một đường thẳng có vô số vectơ chỉ phương, vô số vectơ pháp tuyến.
2. Phương trình tổng quát của đường thẳng
+) Định nghĩa: Phương trình : ax + by + c = 0 () là phương trình tổng quát của đường thẳng nhận (a; b) làm vectơ pháp tuyến.
+) Các dạng đặc biệt:
: ax + c = 0 , a song song với Oy hoặc trùng với Oy khi a = 1 và c = 0.
: ay + c = 0 , a song song với Ox hoặc trùng với Ox khi a = 1 và c = 0.
: ax + by = 0 , đi qua gốc tọa độ O(0; 0)
3. Phương trình tham số của đường thẳng
+) Định nghĩa: Hệ , là phương trình tham số của đường thẳng đi qua điểm A và nhận vectơ làm vectơ chỉ phương, với t là tham số.
+) Chú ý:
Với mỗi thay vào phương trình tham số ta được một điểm M (x; y)
Một đường thẳng có vô số phương trình tham số.
- Phương trình chính tắc: () là phương trình chính tắc của đường thẳng đi qua điểm M và nhận làm vectơ chỉ phương.
- Phương trình đoạn chắn: Đường thẳng cắt hai trục Ox và Oy lần lượt tại hai điểm A (a; 0), B (0; b) với có phương trình đoạn chắn là .
4. Hệ số góc
Phương trình đường thẳng đi qua điểm M có hệ số góc k thỏa mãn:
+ Nếu có vectơ chỉ phương với thì hệ số góc của là
+ Nếu có hệ số góc k thì có vectơ chỉ phương là
5. Vị trí tương đối của hai đường thẳng
+) Xét hai đường thẳng và với . Tọa độ giao điểm của hai đường thẳng đó là nghiệm của hệ phương trình:
(1)
Ta có các trường hợp sau:
TH1: Hệ (1) có duy nhất một nghiệm tại M
TH2: Hệ (1) có vô số nghiệm trùng với
TH3: Hệ (1) vô nghiệm //
+) Chú ý: Với ta có:
6. Góc giữa hai đường thẳng
+ Cho hai đường thẳng có vectơ pháp tuyến và có vectơ pháp tuyến với , góc giữa hai đường thẳng đó được kí hiệu là , luôn nhỏ hơn hoặc bằng . Đặt ta có:
+ Chú ý:
Nếu và có phương trình đường thẳng là và thì
7. Khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng Oxy cho đường thẳng có phương trình ax + by + c = 0 và điểm M. Khoảng cách từ điểm M đến đường thẳng được kí hiệu là d (M, ) và tính bằng công thức:
B. Các dạng bài
Dạng 1: Cách viết các dạng phương trình đường thẳng.
Phương pháp giải:
a) Cách viết phương trình tổng quát của đường thẳng
+ Tìm vectơ pháp tuyến của đường thẳng
+ Tìm một điểm M thuộc
+ Viết phương trình theo công thức:
+ Biến đổi thành dạng ax + by + c = 0
Nếu đường thẳng song song với đường thẳng : ax + by + c = 0 thì có phương trình tổng quát ax + by + c’ = 0, c ≠ c’.
Nếu đường thẳng vuông góc với đường thẳng : ax + by + c = 0 thì có phương trình tổng quát -bx + ay + c’ = 0, c ≠ c’.
b) Cách viết phương trình tham số của đường thẳng
+ Tìm vectơ chỉ phương của đường thẳng
+ Tìm một điểm M thuộc
+ Viết phương trình tham số:
Nếu có hệ số góc k thì có vectơ chỉ phương
Nếu có vectơ pháp tuyến thì có vectơ chỉ phương hoặc và ngược lại.
c) Cách viết phương trình chính tắc của đường thẳng . (chỉ áp dụng khi có vectơ chỉ phương với )
+ Tìm vectơ chỉ phương () của đường thẳng
+ Tìm một điểm M thuộc
+ Viết phương trình chính tắc:
d) Cách viết phương trình đoạn chắn của đường thẳng (chỉ áp dụng khi đường thẳng cắt hai trục Ox, Oy)
+ Tìm hai giao điểm của với trục Ox, Oy lần lượt là A(a; 0), B(0; b)
+ Viết phương trình đoạn chắn ().
Ví dụ minh họa:
Bài 1: Cho đường thẳng d cắt trục Ox, Oy tại hai điểm A(0; 5) và B(6; 0). Viết phương trình tổng quát và phương trình đoạn chắn của đường thẳng d.
Lời giải:
Vì A(0; 5) và B(6; 0) thuộc đường thẳng d nên ta có là vectơ chỉ phương của đường thẳng d.
Vectơ pháp tuyến của d là
Chọn điểm A(0; 5) thuộc đường thẳng d, ta có phương trình tổng quát của đường thẳng d:
5.(x – 0) + 6.(y – 5) = 0
5x + 6y – 30 = 0
Vì đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A(0; 5) và B(6; 0) nên ta có phương trình đoạn chắn: .
Bài 2: Cho đường thẳng d đi qua hai điểm M(5; 8) và N(3; 1). Viết phương trình tham số và phương trình chính tắc của đường thẳng d.
Lời giải:
Vì M(5; 8) và N(3; 1) thuộc đường thẳng d nên ta có là vectơ chỉ phương của đường thẳng d, có = (3 – 5; 1 – 8) = (-2; -7)
Chọn điểm N(3; 1) thuộc đường thẳng d ta có phương trình tham số của đường thẳng d:
Chọn điểm M(5; 8) thuộc đường thẳng d ta có phương trình chính tắc của đường thẳng d:
Dạng 2: Vị trí tương đối giữa hai đường thẳng
Phương pháp giải:
Áp dụng lí thuyết về vị trí tương đối giữa hai đường thẳng: và với .
Tọa độ giao điểm của hai đường thẳng đó là nghiệm của hệ phương trình:
Ví dụ minh họa:
Bài 1: Xét vị trí tương đối của hai đường thẳng sau:
a) và
b) và
c) và .
Lời giải:
Bài 2: Cho hai đường thẳng: và . Tìm tọa độ giao điểm của và .
Lời giải:
Xét tỉ số: . Gọi tọa độ giao điểm của và là M(x; y) với x và y là nghiệm của hệ phương trình:
Vậy tại M (1; 3).
Dạng 3: Tính góc giữa hai đường thẳng.
Phương pháp giải:
Áp dụng lí thuyết về góc giữa hai đường thẳng:
- Cho hai đường thẳng có vectơ pháp tuyến và có vectơ pháp tuyến với , góc giữa hai đường thẳng được kí hiệu là , luôn nhỏ hơn hoặc bằng Đặt ta có:
- Chú ý:
với là vectơ chỉ phương của , là vectơ chỉ phương của .
Nếu và có phương trình đường thẳng là và thì
Ví dụ minh họa:
Bài 1: Cho hai đường thẳng và d’: . Xác định số đo góc giữa d và d’.
Lời giải:
Xét ta có vectơ chỉ phương của d là = (-2; -1)
Vectơ pháp tuyến của d là = (1; -2).
Xét d’: ta có vectơ chỉ phương của d’ là = (1; 3)
Vectơ pháp tuyến của d’ là = (-3; 1).
Ta có:
Góc giữa hai đường thẳng luôn nhỏ hơn hoặc bằng .
Bài 2: Cho hai đường thẳng d: 4x – 2y + 6 = 0 và d’: x + 2y + 1 = 0. Xác định số đo góc giữa d và d’.
Lời giải:
Xét d: 4x – 2y + 6 = 0 ta có vectơ pháp tuyến của d là = (4; -2)
Xét d’: x + 2y + 1 = 0 ta có vectơ pháp tuyến của d’ là = (1; 2)
Ta có: . = 4.1 + (-2).2 = 0
Dạng 4: Khoảng cách từ một điểm đến một đường thẳng.
Phương pháp giải:
Áp dụng lí thuyết về khoảng cách từ một điểm đến một đường thẳng: Trong mặt phẳng Oxy, đường thẳng có phương trình ax + by + c = 0 và điểm M(x0;y0) . Khoảng cách từ điểm M đến đường thẳng được kí hiệu là d (M, ), tính bằng công thức:
d (M, ) =
Ví dụ minh họa:
Bài 1: Tìm bán kính của đường tròn tâm C(-2; -2) . Biết đường tròn tiếp xúc với đường thẳng : 5x + 12y -10 = 0.
Lời giải:
Vì đường tròn tiếp xúc với đường thẳng : 5x + 12y – 10 = 0 nên ta có bán kính của đường tròn bằng khoảng từ tâm C đến đường thẳng . Ta có:
R = d(C, ) =
Bài 2: Cho điểm A (3; 6). Tìm khoảng cách từ A đến đường thẳng d:
Lời giải:
Xét đường thẳng d: ta có vectơ chỉ phương của d là = (-3; 2)
vectơ pháp tuyến của d là = (2; 3)
Chọn điểm M (4; 7) thuộc d ta có phương trình tổng quát của d là:
2.(x – 4) + 3.(y – 7) = 0
2x – 8 + 3y – 21 = 0
2x + 3y – 29 = 0
Khoảng cách từ A (3; 6) đến đường thẳng d là:
d(A;d) =
C. Bài tập vận dụng
Bài 1: Viết phương trình tổng quát của đường thẳng d biết d đi qua 2 điểm A (3; 5) và B (4; 6).
Đáp án: d: - x + y = 2
Bài 2: Viết phương trình tham số của đường thẳng d’ biết d’ đi qua 2 điểm A (2; 7) và B (0; 5).
Đáp án: d’:
Bài 3: Viết phương trình chính tắc của đường thẳng d đi qua hai điểm M (1; 6) và N (2; 3)
Đáp án: d:
Bài 4: Viết phương trình đoạn chắn của đường thẳng d biết d song song với đường thẳng d’: 4x – 3y + 2 = 0 và d đi qua điểm (2; 3)
Đáp án: d: 4x - 3y + 1 = 0
Bài 5: Xét vị trí tương đối giữa đường thẳng d: 3x – 5y + 2 = 0 và đường thẳng d’: 3x – 5y = 0.
Đáp án: d // d’
Bài 6: Cho đường thẳng d: 2x – 6y + 3 = 0 và đường thẳng d’: x – m + 7 = 0. Tìm m để d // d’.
Đáp án: m = 3
Bài 7: Cho hai đường thẳng d: 6x – y = 0 và d’: 2x + 8y – 1 = 0. Tìm tọa độ giao điểm I của d và d’.
Đáp án: I
Bài 8: Cho hai đường thẳng d: 8x – 3y + 2 = 0 và d’: x = 4. Tìm số đo góc giữa d và d’.
Đáp án: (d;d') =
Bài 9: Cho điểm A (4; 7) và đường thẳng d’: x – 6 = 0. Tìm khoảng cách từ A đến đường thẳng d.
Đáp án: d (A, d’) = 2
Bài 10: Cho đường thẳng d: . Tìm m để khoảng cách giữa A (2; m) và đường thẳng d là 5.
Đáp án:
D. Bài tập tự luyện
Câu 1: Cho đường thẳng Δ có một vectơ chỉ phương là u→(-3;5). Vectơ nào dưới đây không phải là VTCP của Δ?
Câu 2: Phương trình tham số của đường thẳng Δ đi qua điểm M(2; 3) và có hệ số góc k = 4 là:
Câu 3: Cho hai đường thẳng d1: 3x – 4y +2 = 0 và d2: mx +2y – 3 = 0. Hai đường thẳng song song với nhau khi:
A. m = 3 B. m=3/2
C. m=-3/2 D. m = - 3
Câu 4: Cho hai đường thẳng d1: y = 3x – 1 và
Góc giữa hai đường thẳng là:
A. α = 30o B. α=45o C. α=60o D. α=90o
Câu 5: Cho điểm A(-2; 1) và hai đường thẳng d1: 3x – 4y + 2 = 0 và d2: mx + 3y – 3 = 0. Giá trị của m để khoảng cách từ A đến hai đường thẳng bằng nhau là:
A. m=±1
B. m = 1 và m = 4
C. m=±4
D. m = - 1 và m = 4
Câu 7: Cho tam giác ABC có phương trình các cạnh AB: 3x – y + 4 = 0, AC: x + 2y – 4 = 0, BC: 2x + 3y – 2 = 0. Khi đó diện tích của tam giác ABC là:
Câu 8: Cho điểm A(3; 5) và các đường thẳng d1: y = 6, d2: x = 2. Số đường thẳng d qua A tạo với các đường thẳng d1, d2 một tam giác vuông cân là
A. 0 B. 1 C. 2 D. Vô số
Câu 9: Có bao nhiêu vectơ pháp tuyến của một đường thẳng?
A. 0 B. 1 C. 2 D. Vô số
Câu 10: Cho đường thẳng Δ có vectơ chỉ phương là u→=(2;-3). Vectơ nào sau đây không phải là vectơ chỉ phương của Δ?
Câu 11: Cho đường thẳng Δ có vectơ chỉ phương là u→=(2;-3). Vectơ nào sau đây là vectơ pháp tuyến của Δ?
Câu 12: Cho đường thẳng Δ có phương trình
Vectơ nào sau đây là vectơ chỉ phương của Δ?
Câu 13: Cho đường thẳng Δ có phương trình y = 4x – 2. Vectơ nào sau đây là vectơ pháp tuyến của Δ?
Câu 14: Cho đường thẳng Δ có phương trình Điểm nào sau đây nằm trên đường thẳng Δ?
Câu 15: Cho đường thẳng Δ có phương trình 3x – 4y + 2 = 0. Điểm nào sau đây không nằm trên đường thẳng Δ?
Câu 16: Một đường thẳng có bao nhiêu phương trình tham số?
A. 0 B. 1 C. 2 D. Vô s
Câu 17: Phương trình của đường thẳng qua điểm M(x0; y0) có vectơ chỉ phương u→=(a;b) là:
A. b(x-x0 ) - a(y-y0 )=0
B. a(x+x0 ) + b(y+y0 )=0
C. a(x-x0 ) + b(y-y0 )=0
Câu 18: Phương trình của đường thẳng qua điểm M(x0 ;y0 ) có vectơ pháp tuyến n→=(a;b) là:
A. b(x - x0) - a(y - y0) = 0
B. a(x + x0) + b(y + y0) = 0
C. a(x - x0) + b(y - y0) = 0
Câu 19: Phương trình tham số của đường thẳng Δ đi qua điểm M(3; 4) và có vectơ chỉ phương là u→ = (3;4) là:
Câu 20: Phương trình tổng quát của Δ đi qua điểm M(3;4) và có vectơ pháp tuyến n→=(1;-2)là:
A. 3(x + 1) + 4(y – 2) = 0
B. 3(x – 1) + 4(y + 2) = 0
C. (x – 3) – 2(y – 4) = 0
D. (x + 3) – 2(y + 4) = 0
Xem các Phương pháp giải bài tập hay, chi tiết khác:
Phương trình đường tròn và cách giải bài tập
Phương trình đường elip và cách giải bài tập
Công thức xác định vectơ chỉ phương của đường thẳng hay, chi tiết nhất
Công thức xác định vectơ pháp tuyến của đường thẳng hay, chi tiết nhất
Công thức viết phương trình tham số của đường thẳng hay, chi tiết nhất
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.