Phương pháp giải Giới hạn của dãy số (HAY NHẤT 2024)

219

Toptailieu.vn biên soạn và giới thiệu Phương pháp giải Giới hạn của dãy số (HAY NHẤT 2024) gồm đầy đủ các phần: Lý thuyết, phương pháp giải, bài tập minh họa có lời giải chi tiết giúp học sinh làm tốt bài tập Toán 11 từ đó học tốt môn Toán. Mời các bạn đón xem:

Phương pháp giải Giới hạn của dãy số (HAY NHẤT 2024)

1. Lý thuyết

a) Dãy số có giới hạn 0

Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu với mỗi số dương nhỏ tùy ý cho trước, mọi số hạng của dãy số kể từ một số hạng nào đó trở đi, |un| nhỏ hơn số dương đó.

Kí hiệu: limnun=0 hay lim un = 0 hay un0 khi n+.

b) Dãy số có giới hạn hữu hạn

Ta nói rằng dãy số (un) có giới hạn là số thực L nếu lim (un – L) = 0

Kí hiệu: limnun=L hay lim un = L hay unL khi n+.

c) Dãy số có giới hạn vô cực

Dãy số (un) có giới hạn là + khi n+, nếu un có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.

Ký hiệu: limun=+ hoặc un+ khin+ 

Dãy số (un) có giới hạn là - khi n+, nếu limun=+

Ký hiệu: limun= hoặc un khin+ 

d) Một vài giới hạn đặc biệt

limun=0limun=0

lim1n=0;  lim1nk=0,k>0,k*

limnk=+,k>0,k*

limqn=0 khi   q<1+ khi   q>1

e) Định lý về giới hạn hữu hạn

* Nếu lim un = a và lim vn = b và c là hằng số. Khi đó ta có :

lim(un + vn) = a + b

lim(un - vn) = a - b

lim(un vn) = a.b

limunvn=ab,b0

lim(cun ) = c.a

lim|un | = |a|

limun3=a3

Nếu un0 với mọi n thì a0 và limun=a.

Định lí kẹp: Cho ba dãy số (vn); (un) và (wn):

Nếu vnunwn,  nN*limvn=limwn=a thì lim un = a.

Hệ quả: Cho hai dãy số (un) và (vn):

Nếu unvn,  nN*limvn=0 thì lim un = 0.

f) Một vài quy tắc tìm giới hạn vô cực

* Quy tắc tìm giới hạn tích lim (unvn)

Nếu limun=L0,   limvn=+(hay). Khi đó: lim (unvn)

lim un = L

lim vn

lim (unvn)

+

+ +

+

- -

-

+ -

-

- +

* Quy tắc tìm giới hạn thương

lim un = L

lim vn

Dấu của vn

limunvn

L

±

Tùy ý

0

L > 0

0

+

+

0

-

-

L < 0

0

+

-

0

-

+

g) Tổng cấp số nhân lùi vô hạn

Xét cấp số nhân vô hạn u1; u1q; u1q2; … u1qn; … có công bội |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là: S=u1+u1q+u1q2+....=u11q   q<1

2. Các dạng toán

Dạng 1: Tính giới hạn sử dụng một vài giới hạn đặc biệt

Phương pháp giải:

Sử dụng các giới hạn đặc biệt:

limun=0limun=0

lim1n=0;lim1nk=0,k>0,k*limnk=+,k>0,k*

limqn=0khi   q<1+khi   q>1

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

a) lim1n2

b) lim1n2+n+3

c) lim1nn

Lời giải

Áp dụng công thức tính giới hạn đặc biệt, ta có:

a) lim1n2=0

b) lim1n2+n+3=0

c) lim1nn=0

Ví dụ 2: Tính các giới hạn sau:

a) lim12n

b) lim54n+1

c) lim (-0,999)n

Lời giải

a) lim12n=0 vì 12<1

b) lim54n+1=+ vì 54>1

c) lim (-0,999)n = 0 vì |-0,999| < 1.

Dạng 2: Tính giới hạn hữu hạn của phân thức

Phương pháp giải:

Trường hợp lũy thừa của n: Chia cả tử và và mẫu cho nk (với nk là lũy thừa với số mũ lớn nhất).

Trường hợp lũy thừa mũ n: Chia cả tử và mẫu cho lũy thừa có cơ số lớn nhất.

Sử dụng một vài giới hạn đặc biệt:

limun=0limun=0lim1n=0;lim1nk=0,k>0,k*limnk=+,k>0,k*limqn=0 khi   q<1+ khi   q>1

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau

a) lim2n3+3n2+4n4+4n3+n

b) lim5n+4n7n+1+4n+1

c) lim2nn+1n2+2n3

Lời giải

a) lim2n3+3n2+4n4+4n3+n=lim2n3+3n2+4n4n4+4n3+nn4

=lim2n+3n2+4n41+4n+1n3=0+0+41+0+0=0

Vì lim2n=0, lim3n2=0, lim4n4=0, lim4n=0 và lim1n3=0.

b) lim5n+4n7n+1+4n+1=lim5n7n+1+4n7n+17n+17n+1+4n+17n+1

=lim17.57n+17.47n1+47n+1=17.0+17.01+0=0

Vì  lim57n=lim47n=0

c) lim2nn+1n2+2n3=lim2nn+1n2n2+2n3n2

=lim2n+1n21+2nn3n2=0+01+00=0

Vì lim2n=0,lim1n2=0, lim2nn=0,lim3n2=0

Ví dụ 2: Tính các giới hạn sau:

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Dạng 3: Tính giới hạn hữu hạn sử dụng phương pháp liên hợp

Phương pháp giải: Sử dụng các công thức liên hợp (thường sử dụng trong các bài toán chứa căn)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Ví dụ 2: Tính giới hạn sau: limn3+3n23n

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Dạng 4: Tính giới hạn ra vô cực dạng chứa đa thức hoặc căn thức

Phương pháp giải:

Rút bậc lớn nhất của đa thức làm nhân tử chung.

Sử dụng quy tắc giới hạn tới vô cực lim (unvn)

Nếu limun=L0,   limvn=+(hay). Khi đó: lim (unvn)

lim un = L

lim vn

lim (unvn)

+

+ +

+

- -

-

+ -

-

- +

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Ví dụ 2: Tính các giới hạn sau

a) lim2nn3+2n2

b) limn2n4n+1

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Dạng 5: Tính giới hạn ra vô cực dạng phân thức

Phương pháp giải:

Rút bậc lớn nhất của tử và mẫu ra làm nhân tử chung.

Sử dụng quy tắc giới hạn tới vô cực lim (unvn)

Nếu limun=L0,   limvn=+(hay). Khi đó: lim (unvn)

lim un = L

lim vn

lim (unvn)

+

+ +

+

- -

-

+ -

-

- +

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

a) lim2n43n3+2n3+2

b) lim2n13n2+232n5+4n31

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Ví dụ 2: Tính giới hạn sau lim3n22n4+3n24n3n2+2.

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Dạng 6: Tính giới hạn sử dụng định lý kẹp

Phương pháp giải:

Sử dụng định lý kẹp và hệ quả của định lý kẹp

Định lí kẹp: Cho ba dãy số (vn); (un) và (wn): Nếu vnunwn,  nN*limvn=limwn=a thì lim un = a

Hệ quả: Cho hai dãy số (un) và (vn): Nếu unvn,  nN*limvn=0 thì lim un = 0.

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

a) lim1nn+4

b) lim1n2n+113n+1

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Ví dụ 2: Tính các giới hạn sau :

a) limsin2nn+2

b) lim1+cosn32n+3

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

Dạng 7: Giới hạn dãy số có công thức truy hồi

Phương pháp giải:

Cho dãy số (un) ở dạng công thức truy hồi, biết (un) có giới hạn hữu hạn

Giả sử lim un = a (a là số thực) thì lim un+1 = a.

Thay a vào công thức truy hồi. Giải phương trình tìm a.

Ta được giới hạn của (un) là lim un = a.

Ví dụ minh họa:

Ví dụ 1: Tìm lim un biết (un) có giới hạn hữu hạn và un:u1=1un+1=2un+3un+2,  n*

Lời giải

Giả sử lim un = a, khi đó lim un+1 = a

Suy ra a=2a+3a+2a2+2a=2a+3a2=3a=±3

Do u1=1>0,un+1=2un+3un+2>0  n* nên a>0a=3

Vậy limun=3.

Ví dụ 2: Tìm lim un biết (un) có giới hạn hữu hạn và un:u1=2un+1=2+un,  n*.

Lời giải

Vì u1=2>0;un+1=2+un>0

Giả sử lim un = a (a > 0), khi đó lim un+1 = a

Suy ra a=2+aa2=a+2

a2a2=0a=1   (Loi)a=2  

Vậy lim un = 2.

Dạng 8: Giới hạn của tổng vô hạn hoặc tích vô hạn

Phương pháp giải:

* Rút gọn (un) (sử dụng tổng cấp số cộng, cấp số nhân hoặc phương pháp làm trội)

* Rồi tìm lim un theo định lí hoặc dùng nguyên lí định lí kẹp.

* Định lí kẹp: Cho ba dãy số (vn); (un) và (wn): Nếu vnunwn,  nN*limvn=limwn=a thì lim un = a

Hệ quả: Cho hai dãy số (un) và (vn): Nếu unvn,  nN*limvn=0 thì lim un = 0.

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

a) lim11.3+13.5+...+12n12n+1

b) lim1+2+3+4+...+n1+3+32+33+...+3n.n+1

Lời giải

Giới hạn của dãy số và cách giải bài tập – Toán lớp 11 (ảnh 1)

b) L=lim1+2+3+4+...+n1+3+32+33+...+3n.n+1

Xét tử số: Ta thấy 1; 2; 3; 4; … ; n là một dãy số thuộc cấp số cộng có n số hạng với u1 = 1 và d = 1.

Tổng n số hạng của cấp số cộng: Sn=u1+unn2=1+nn2.

Xét mẫu số: Ta thấy 1; 3 ; 3; 3; … ; 3n là một dãy số thuộc cấp số nhân có (n+1) số hạng với u1 = 1 và q = 3.

Tổng (n + 1) số hạng của cấp số nhân: Sn+1=u1.1qn+11q=13n+113=3n+112.

 Khi đó: L=lim1+nn23n+112.(n+1)=limn3n+11

Vì n3n+11=n3.3n1<n3n<2n3n=23n và lim23n=0

Nên L=limn3n+11=0

(Bằng quy nạp ta luôn có n<2n,n* và 3n>1,n*3n+13n=2.3n>2>13n+11>3n).

4. Bài tập vận dụng 

Bài 1: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Khi đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Tính Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 5: Cho dãy số (un). Biết Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với mọi n ≥ 1. Tìm Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 6: Cho dãy số (un) với Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Tính lim un

Hướng dẫn:

un là tổng n số hạng đầu tiên của một cấp số nhân có u1 = 1/2 và q = (-1)/2.

Do đó

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 7: Tính lim Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

5. Bài tập tự luyện 

Bài 1: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 0             B. 1            C. 3/2              D. Không có giới hạn

Bài 2: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1            B. 0            C. 2/3            D. 2

 

Bài 3: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

+∞            B. 3            C. 3/2            D. 2/3

Bài 4: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1            B. 1/2            C. 1/4            D. 3/2

Bài 5: Cho dãy số (un) với Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án. Mệnh đề nào sau đây là mệnh đề đúng?

A. lim⁡un = 0

B. lim⁡un = 1/2

C. lim⁡un = 1

D. Dãy số (un) không có giới hạn khi n → +∞

Bài 6: Tìm giá trị đúng của Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. √2 + 1.             B. 2.             C. 2√2.             D. 1/2.

Bài 7: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 0            B. 1/3            C. 2/3            D. 1

Bài 8: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án bằng:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 9: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 1/2            B. 1            C. 0            D. 2/3

Bài 10: Tính giới hạn: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

A. 11/18            B. 2            C. 1            D. 3/2

Xem các phương pháp giải bài tập hay, chi tiết khác:

Giới hạn của hàm số và cách giải bài tập

Hàm số liên tục và cách giải bài tập

Cách tính đạo hàm bằng định nghĩa hay, chi tiết

Quy tắc tính đạo hàm và cách giải bài tập

Đạo hàm của hàm số lượng giác và cách giải

 

 

Đánh giá

0

0 đánh giá