SBT Toán 11 (Cánh diều) Bài 1: Giới hạn của dãy số 

281

Toptailieu.vn biên soạn và giới thiệu giải Sách bài tập Toán 11 Bài 1: Giới hạn của dãy số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm các bài tập từ đó nâng cao kiến thức và biết cách vận dụng phương pháp giải vào các bài tập trong SBT Toán 11 Bài 1.

SBT Toán 11 (Cánh diều) Bài 1: Giới hạn của dãy số

Bài 1 trang 68 SBT Toán 11 Tập 1Phát biểu nào sau đây là sai?

A. lim12n=0 .

B. lim32n=0 .

C. lim12n=0 .

D. lim32n=0 .

Lời giải:

Đáp án đúng là: B

Vì limqn = 0 với |q| < 1 nên ta có:

lim12n=lim12n=0 do Phát biểu nào sau đây là sai trang 68 SBT Toán 11 ;

lim12n=lim12n=0 doPhát biểu nào sau đây là sai trang 68 SBT Toán 11  ;

lim32n=0 do Phát biểu nào sau đây là sai trang 68 SBT Toán 11 .

Vậy các đáp án A, C, D đúng.

Vì Phát biểu nào sau đây là sai trang 68 SBT Toán 11  nên lim32n0 , do đó đáp án B sai.

Bài 2 trang 68 SBT Toán 11 Tập 1Cho limun = a, lim vn = b. Phát biểu nào sau đây là sai?

A. lim(un + vn) = a + b.

B. lim(un – vn) = a – b. 

C. lim(un . vn) = a . b.

D. limunvn=abb.  

Lời giải:

Đáp án đúng là: D

Theo định lí về giới hạn hữu hạn thì ta thấy đáp án D sai.

Bài 3 trang 68 SBT Toán 11 Tập 1Nếu limun = C và limvn = +∞ (hoặc limvn = −∞) thì limunvn  bằng:

A. 0.

B. –∞.

C. +∞.

D. –∞ hoặc +∞.

Lời giải:

Đáp án đúng là: A

Nếu limun = C và limvn = +∞ (hoặc limvn = −∞) thì limunvn=0 .

Bài 4 trang 68 SBT Toán 11 Tập 1Phát biểu nào sau đây là sai?

A. Nếu limun = +∞ và limvn = C, C > 0 thì lim unvn = +∞.

B. Nếu limun = −∞ và limv­n = C, C < 0 thì lim unvn = +∞.

C. Nếu limun = +∞ và limvn = C, C < 0 thì lim unvn= 0.  

D. Nếu limun = –∞ và limvn = C, C > 0 thì limunvn= .

Lời giải:

Đáp án đúng là: C

Theo định lí giữa giới hạn hữu hạn và giới hạn vô cực, nếu limun = +∞ và limvn = C, C < 0 thì limunvn = –∞ nên đáp án C sai.  

Bài 5 trang 68 SBT Toán 11 Tập 1Phát biểu nào sau đây là đúng? 

A. Nếu limun = a thì limun=a .

B. Nếu limun = a thì a ≥ 0 và limun=a .

C. Nếu limun = a thì a ≥ 0.

D. Nếu un ≥ 0 với mọi n và limun = a thì a ≥ 0 và limun=a . 

Lời giải:

Đáp án đúng là: D

Theo định lí về giới hạn hữu hạn, nếu un ≥ 0 với mọi n và limun = a thì a ≥ 0 và limun=a . 

Bài 6 trang 68 SBT Toán 11 Tập 1: Chứng minh rằng lim1nn2=0 .

Lời giải:

Xét dãy số (un) có un=1nn2.

Giả sử h là số dương bé tùy ý cho trước. Ta có: Chứng minh rằng  lim (-1)^n / n^2 = 0

Do đó, Chứng minh rằng  lim (-1)^n / n^2 = 0.

Vậy với các số tự nhiên n lớn hơn 1h  thì |u­n| < h.

Suy ra lim1nn2=0 .

Bài 7 trang 68 SBT Toán 11 Tập 1Cho hai dãy số (un), (vn) với un=34n+1 , vn=853n2+2 . Tính:

a) limun, limvn;

b) lim(u+ vn), lim(un – vn), lim(un . vn), limunvn .

Lời giải:

a) Ta có

limun=lim34n+1=lim3lim4n+1=30=3;

limvn=lim853n2+2=lim8lim53n2+2=80=8.

b) Ta có

lim(u+ vn) = limun + limvn = 3 + 8 = 11;

lim(un – vn) = limun – limvn = 3 – 8 = – 5;

lim(un . vn) = limun . limvn = 3 . 8 = 24;

limunvn=limunlimvn=38.

Bài 8 trang 68 SBT Toán 11 Tập 1Tính các giới hạn sau:

a) lim4n+23 ;

b) lim3n+45+2n ;

c) lim3+1n+15n ;

d) lim654n .

Lời giải:

a) Vì lim(4n + 2) =Tính các giới hạn sau trang 68 SBT Toán 11  = lim (n . 4) = +∞ và lim3 = 3 > 0.

Do đó, lim4n+23=+.

b) Vì lim(3n + 4) Tính các giới hạn sau trang 68 SBT Toán 11  = lim (n . 3) = +∞

và lim5+2n=lim5+lim2n=5  < 0.

Do đó, lim3n+45+2n= .

c) Vì lim3+1n+1=lim3+lim1n+1=3  và lim5n = +∞.

Nên lim3+1n+15n=0 .

d) lim654n=lim6lim54n=6lim5.14n

=65lim14n=65.0=6.

Bài 9 trang 69 SBT Toán 11 Tập 1Tính các giới hạn sau:

a) lim6n53n ;

b) lim2n26n+28n25n+4 ;

c) limn35n+13n24n+2 ;

d) lim4n+19n2n+2 ;

e) lim4n2+n+18n+3 ;

g) lim4n+5n3.4n4.5n .

Lời giải:

a) lim6n53n=limn65n3n=lim65n3=lim65nlim3=63=2 .

b) lim2n26n+28n25n+4 =limn226n+2n2n285n+4n2

=lim26n+2n285n+4n2=lim26n+2n2lim85n+4n2=28=14.

c) limn35n+13n24n+2=limn315n2+1n3n33n4n2+2n3=lim15n2+1n33n4n2+2n3

=lim15n2+1n3lim3n4n2+2n3=+ (do lim15n2+1n3=1  và lim3n4n2+2n3=0  ).

d) lim4n+19n2n+2=limn24n+1n2n291n+2n2 =lim4n+1n291n+2n2

=lim4n+1n2lim91n+2n2=09=0 .

e) lim4n2+n+18n+3 =limn24+1n+1n2n8+3n =lim4+1n+1n28+3n

=lim4+1n+1n2lim8+3n=lim4+1n+1n2lim8+3n=48=28=14.

g) lim4n+5n3.4n4.5n=lim5n4n5n+15n3.4n5n4=lim45n+13.45n4

 s

Bài 10 trang 69 SBT Toán 11 Tập 1a) Tính tổng của cấp số nhân lùi vô hạn (u­n) với u1=54,q=13 .

b) Biểu diễn số thập phân vô hạn tuần hoàn 2,(3) dưới dạng phân số.

Lời giải:

a) Tổng của cấp số nhân lùi vô hạn (u­n) với u1=54,q=13  là:

S=u11q=54113=1516.

b) Ta có 2,(3) = 2 + 0,(3) = 2 + 0,3 + 0,03 + 0,003 + ... + 0,0000003 + ...

Dãy số 0,3; 0,03; 0,003; ...lập thành một cấp số nhân lùi vô hạn có số hạng đầu u1 = 0,3 và công bội q=110  < 1. Do đó:

0,3 + 0,03 + 0,003 + ... + 0,0000003 + ... =0,31110=13 .

Vậy 2,(3) = 2 + 13=73 .

Bài 11 trang 69 SBT Toán 11 Tập 1Từ độ cao 100 m, người ta thả một quả bóng cao su xuống đất. Giả sử cứ sau mỗi lần chạm đất, quả bóng nảy lên một độ cao bằng 14  độ cao mà quả bóng đạt được trước đó. Gọi h­n là độ cao quả bóng đạt được ở lần nảy thứ n.

a) Tìm số hạng tổng quát của dãy số (hn).

b) Tính giới hạn của dãy số (hn) và nêu ý nghĩa giới hạn của dãy số (hn).

c) Gọi Sn là tổng độ dài quãng đường đi được của quả bóng từ lúc bắt đầu thả quả bóng đến khi quả bóng chạm đất lần thứ n. Tính Sn, nếu quá trình này cứ tiếp tục diễn ra mãi thì tổng quãng đường quả bóng di chuyển được là bao nhiêu?

Lời giải:

a) Theo đề bài ta có, hn=14hn1  nên (hn) là một cấp số nhân với h1 = 14.100=25  và công bội q=14 .

Suy ra số hạng tổng quát của dãy số (hn): hn=u1qn1=25.14n1=1004n .

b) Ta có: limhn = lim1004n=lim100.14n=lim100.lim14n=100.0=0 .

Từ giới hạn đó, ta rút ra được ý nghĩa: Khi n càng dần tới vô cực thì độ cao của quả bóng đạt được sau khi nảy ngày càng nhỏ và độ cao đó dần tới 0.

c) Ta có: Sn=100+21004+10042+10043+...+1004n .

Nếu quá trình bóng nảy cứ tiếp tục diễn ra mãi, tổng quãng đường quả bóng di chuyển được là: limSn=100+21004+10042+10043+...+1004n+... .

Vì 1004;10042;10043;...;1004n;...  lập thành một cấp số nhân lùi vô hạn với u1=1004  và công bội q=14<1  nên ta có limSn=100+2.1004114=5003 .

Vậy tổng quãng đường quả bóng di chuyển được là 5003  m.

Xem thêm các bài SBT Toán 11 Cánh Diều hay, chi tiết khác:

Bài tập cuối chương 2

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 1: Đường thẳng và mặt phằng trong không gian

Đánh giá

0

0 đánh giá