Lý thuyết Hàm số liên tục (Cánh Diều) Toán 11

378

Toptailieu.vn biên soạn và giới thiệu Lý thuyết Hàm số liên tục (Cánh Diều) Toán 11 hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi và bài tập Toán 11 Bài 3 từ đó học tốt môn Toán 11.

Lý thuyết Hàm số liên tục (Cánh Diều) Toán 11

A. Lý thuyết Hàm số liên tục

I. Khái niệm

1. Hàm số liên tục tại 1 điểm

 Cho hàm y=f(x) xác định trên khoảng (a;b)x0(a;b). Hàm số f(x) được gọi là liên tục tại điểm x0nếu limxx0f(x)=f(x0).

 Hàm số không liên tục tại xo được gọi là gián đoạn tại điểm đó.

2. Hàm số liên tục trên một khoảng hoặc một đoạn

- Hàm số y=f(x) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng này.

- Hàm số y=f(x) được gọi là liên tục trên đoạn [a;b] nếu nó liên tục trên khoảng (a;b) và limxa+f(x)=f(a),limxbf(x)=f(b).

* Nhận xét: Đồ thị hàm số liên tục trên một khoảng là “đường liền” trên khoảng đó.

III. Một số định lí cơ bản

1. Tính liên tục của hàm sơ cấp cơ bản

- Hàm số đa thức và hàm số y=sinx,y=cosx liên tục trên R.

- Các hàm số y=tanx,y=cotx,y=x và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.

2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục

Giả sử hai hàm số y=f(x) và y=g(x) liên tục tại điểm x0. Khi đó:

a, Các hàm số y=f(x)±g(x) và y=f(x).g(x) liên tục tại điểm x0.

b, Hàm số y=f(x)g(x) liên tục tại điểm x0 nếu g(x0)0.

Lý thuyết Hàm số liên tục – Toán 11 Cánh diều (ảnh 1)
 

B. Bài tập Hàm số liên tục

Đang cập nhật ...

Xem thêm Lý thuyết  các bài Toán 11 Cánh diều hay, chi tiết khác:

Lý thuyết Bài 2: Giới hạn của hàm số

Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian

Lý thuyết Bài 2: Hai đường thẳng song song trong không gian

Lý thuyết Bài 3: Đường thẳng và mặt phẳng song song

Lý thuyết Bài 4: Hai mặt phẳng song song

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá