Xét tính tăng, giảm của mỗi dãy số sau: un = n² + n + 1

351

Với Giải Bài 2.2 trang 33 SBT Toán 11 Tập 1 trong Bài 5: Dãy số Sách bài tập Toán lớp 11 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Xét tính tăng, giảm của mỗi dãy số sau: un = n² + n + 1

Bài 2.2 trang 33 SBT Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số sau:

a) un = n² + n + 1;

b) un=2n+5n+2;

c) un=1n1n2+1.

Lời giải:

a) Ta có un + 1 – u= [(n + 1)2 + (n + 1) + 1] – (n2 + n + 1)

                             = n2 + 2n + 1 + n + 1 + 1 – n2 – n – 1

                             = 2n + 2 > 0, ∀ n ≥ 1.

Do đó, un + 1 > un ∀ n ≥ 1. Vậy (un­) là dãy số tăng.

b) Ta có un+1un=2n+1+5n+1+22n+5n+2=2n+7n+32n+5n+2

          =2n+7n+22n+5n+3n+3n+2=1n+3n+2<0,  n1.

Do đó, un + 1 < un ∀ n ≥ 1. Vậy (un­) là dãy số giảm.

c) Ta có un+1un=1n+11n+12+11n1n2+1=1nn+12+1+1nn2+1

                            =1n1n+12+1+1n2+1.

Vì 1n+12+1+1n2+1>0  n1 nên hiệu un + 1 – un dương hay âm phụ thuộc vào n, cụ thể là dương khi n chẵn và âm khi n lẻ.

Do đó, dãy số (un) không tăng cũng không giảm.

Đánh giá

0

0 đánh giá