SBT Toán 11 trang 57 Tập 1 (Chân trời sáng tạo)

247

Với Giải trang 57 SBT Toán lớp 11 trong Bài 1: Dãy số Sách bài tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

 SBT Toán 11 trang 57 Tập 1 (Chân trời sáng tạo)

Bài 1 trang 57 SBT Toán 11 Tập 1Cho dãy số (un) với un=n+12n+1. Số 815 là số hạng thứ bao nhiêu của dãy số?

Lời giải:

Ta có: n+12n+1=815

Suy ra 15(n + 1) = 8(2n + 1), hay 15n + 15 = 16n + 8, nên n = 7.

Vậy 815 là số hạng thứ bảy của dãy số.

Bài 2 trang 57 SBT Toán 11 Tập 1Dự đoán công thức số hạng tổng quát của dãy số (un), biết u1=2un+1=21un.

Lời giải:

Bốn số hạng đầu tiên của dãy un là:

u1 = ‒2;

u2=212=32;

u3=2132=43;

u4=2143=54;

Ta dự đoán được số hạng tổng quát của dãy số (un) là un=n+1n

Bài 3 trang 57 SBT Toán 11 Tập 1Cho dãy số (un) xác định bởi u1=4un+1=un+nn1 Tìm số hạng thứ năm của dãy số đó.

Lời giải:

Ta có:

u2 = u1 + 1 = 4 + 1 = 5;

u3 = u2 + 2 = 5 + 2 = 7;

u4 = u3 + 3 = 7 + 3 = 10

Do đó, số hạng thứ năm của dãy số là u5 = u4 + 4 = 10 + 4 = 14.

Bài 4 trang 57 SBT Toán 11 Tập 1Xét tính bị chặn của dãy số (un) với un = (‒1)n.

Lời giải:

Ta có:

u1 = (‒1)1 = −1; u3 = (‒1)3 = −1; …

u2 = (‒1)2 = 1; u4 = (‒1)4 = 1; …

Do đó ‒1 ≤ un ≤ 1, suy ra (un) là dãy bị chặn.

Đánh giá

0

0 đánh giá