Với Giải trang 57 SBT Toán lớp 11 trong Bài 1: Dãy số Sách bài tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
Nội dung bài viết
SBT Toán 11 trang 57 Tập 1 (Chân trời sáng tạo)
Lời giải:
Ta có: n+12n+1=815
Suy ra 15(n + 1) = 8(2n + 1), hay 15n + 15 = 16n + 8, nên n = 7.
Vậy 815 là số hạng thứ bảy của dãy số.
Lời giải:
Bốn số hạng đầu tiên của dãy un là:
u1 = ‒2;
u2=−2−1−2=−32;
u3=−2−1−32=−43;
u4=−2−1−43=−54;
Ta dự đoán được số hạng tổng quát của dãy số (un) là un=−n+1n
Lời giải:
Ta có:
u2 = u1 + 1 = 4 + 1 = 5;
u3 = u2 + 2 = 5 + 2 = 7;
u4 = u3 + 3 = 7 + 3 = 10
Do đó, số hạng thứ năm của dãy số là u5 = u4 + 4 = 10 + 4 = 14.
Bài 4 trang 57 SBT Toán 11 Tập 1: Xét tính bị chặn của dãy số (un) với un = (‒1)n.
Lời giải:
Ta có:
u1 = (‒1)1 = −1; u3 = (‒1)3 = −1; …
u2 = (‒1)2 = 1; u4 = (‒1)4 = 1; …
Do đó ‒1 ≤ un ≤ 1, suy ra (un) là dãy bị chặn.
Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 4 trang 57 SBT Toán 11 Tập 1: Xét tính bị chặn của dãy số (un) với un = (‒1)n.
Bài 7 trang 58 SBT Toán 11 Tập 1: Xét tính tăng, giảm và bị chặn của dãy số (un) với
Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 1 trang 32
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.