Lý thuyết Quy tắc dấu ngoặc và quy tắc chuyển vế (Chân trời sáng tạo) Toán 7

Toptailieu.vn biên soạn và giới thiệu Lý thuyết Quy tắc dấu ngoặc và quy tắc chuyển vế (Chân trời sáng tạo) Toán 7 hay, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững nội dung kiến thức từ đó dễ dàng làm các bài tập Toán 7.

Lý thuyết Quy tắc dấu ngoặc và quy tắc chuyển vế (Chân trời sáng tạo) Toán 7

A. Lý thuyết

1. Quy tắc dấu ngoặc

– Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:

• Có dấu “+”, thì vẫn giữ nguyên dấu của các số hạng trong ngoặc.

x + (y + z – t) = x + y + z – t

• Có dấu “−”, thì phải đổi dấu tất cả các số hạng trong ngoặc.

x – (y + z – t) = x – y – z + t

Ví dụ: Tính

a) 314+0,414 ;

b) 0,5+11343+14.

Hướng dẫn giải

a) 314+0,414

 134+41014

 134+2514

 134+2514

13414+25

 = =124+25=3+25  

155+25=175 .

b) 0,5+11343+14.

12+4343+14  

12+434314  

1214

2414=14 .

2. Quy tắc chuyển vế

Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.

Với mọi x, y, z  ℚ:        Nếu x + y = z thì x = z – y.

Ví dụ: Tìm x, biết:

a) x+3,5=312 ;                                 

b) 34+x=56 .

Hướng dẫn giải

a) x+3,5=312

x=3123,5

x=31272

x=242

x=12

Vậy x=12 .

b) 34+x=56

x=5634

x=1012+912

x=1912

Vậy .

3. Thứ tự thực hiện các phép tính

– Thứ tự thực hiện các phép tính trong một biểu thức đối với biểu thức không có dấu ngoặc:

• Nếu biểu thức chỉ có phép cộng, trừ hoặc chỉ có phép nhân, chia, ta thực hiện phép tính theo thứ tự từ trái sang phải.

• Nếu biểu thức có các phép cộng, trừ, nhân, chia, nâng lên luỹ thừa, ta thực hiện:

Luỹ thừa → Nhân và chia → Cộng và trừ

– Thứ tự thực hiện các phép tính đối với biểu thức có dấu ngoặc:

() → [] → {}

Ví dụ: Tính:

a) 13+7456:0,5 ;

b) 315115:152:310 .

Hướng dẫn giải

a) 13+7456:0,5

 13+7456:12

13+7456.21

13+745.26.1

=  13+7453  

13+74+53

13+53+74

63+74=2+74

84+74=154.

b) 315115:152:310

165115:1252.103

165115:125.103

165115.251.103

1652515.103

165+2515.103

4815+2515.103

2315.103=469 .

B. Bài tập tự luyện

1. Bài tập trắc nghiệm

Câu 1. Kết quả của phép tính 12023.79+20222023.79+79 bằng:

A. 10;

B. 20;

C. 0;

D. 15.

Hướng dẫn giải:

Đáp án đúng là: C

Ta có 12023.79+20222023.79+79

 =12023.79+20222023.79+79.1

 =79.12023+202220231

=79.202320231=79.11=79.0=0.

Vậy ta chọn phương án C.

Câu 2. Số hữu tỉ x thỏa mãn 74x60+53=125 là:

A. x = 149;

B. x = ‒149;

C. x = 1496 ;

D. x=1496.

Hướng dẫn giải:

Đáp án đúng là: A

Ta có 74x60+53=125 .

 x60+53=74125x60+53=74+125x60+53=3520+4820x60+53=8320x60=832053x60=2496010060x60=14960x=14960.60

x = 149

Vậy ta chọn phương án A.

Câu 3. Kết luận nào đúng về giá trị của biểu thức A=152313+56?   

A. A < 2

B. A > 2

C. A < 1

D. A < 0

Hướng dẫn giải

Đáp án đúng là: B

Ta có: A=152313+56

 =15 231356

 =15 3356

=15156

=156656

=15 116

=15+116

=630+5530

=6130.

Do A=6130>6030=2  nên A > 2.

Vậy ta chọn phương án B.

2. Bài tập tự luận

Bài 1.  Bỏ dấu ngoặc rồi tính (tính hợp lí nếu có thể):

a) 23+4512;         

b) 14+13416.

Hướng dẫn giải

a) 23+4512;  

23+4512

2030+24301530  

=1130;

b) 14+13416.

 14+134+16

1434+1+16

 44+1+16

(1)+1+16

=0+16=16.

Bài 2. Tính nhanh:

a) 1625.34+925.34 ;

b) 58.24131113.58+58 ;

c) 35+58:1113+3825:1113 .

Hướng dẫn giải

a) 1625.34+925.34  

=1625+925.34

1  .  34=34 ;

b) 58.24131113.58+58  

58.24131113+1

58.1313+1

58  .  1+1

58.2=54 .

c) 35+58:1113+3825:1113

35+58+3825:1113

 3525+58+38:1113

55+88:1113=1+1:1113

0:1113=0 .

Bài 3. Tìm x, biết:

a) 45+x=67 ;

b) 513:54x=0,8 ;

c) 310x213=25:215 .

Hướng dẫn giải

a)  45+x=67                                     

x=6745

x=30352835

x=235

Vậy x=235 .

b) 513:54x=0,8

 

163:54x=45                             

54x=163:45

54x=163.54

54x=203

x=54203

x=15128012

x=6512

Vậy x=6512 .

c) 310x213=25:215                                  

310x73=25.152                              

 310x73=3                                             

 310x=3+73                

310x=93+73                                                                       

310x=23                                         

x=23:310 

x=23.103                                    

x=209                                       

Vậy x=209 .

Bài 4. Bác An mua 4 món hàng trong một cửa hàng:

+ Món thứ nhất: giá niêm yết là 250 000 đồng và giảm giá 5%.

+ Món thứ hai: giá niêm yết là 125 000 đồng và giảm giá 8%.

+ Món thứ ba: giá niêm yết là 50 000 đồng và giảm giá 15%.

+ Món thứ tư: giá niêm yết là 85 000 đồng và được giảm 20%.

Bác An đã đưa cho thu ngân 500 000 đồng. Hỏi bác An được trả lại bao nhiêu tiền?

Hướng dẫn giải:

Số tiền bác An phải trả khi mua món thứ nhất được giảm giá 5% là:

250 000.(100% – 5%) = 250 000.95%

250  000.95100= 237 500 (đồng).

Số tiền bác An phải trả khi mua món thứ hai được giảm giá 8% là:

125 000.(100% – 8%) = 123 000.92%

=125  000.92100=115 000 (đồng).

Số tiền bác An phải trả khi mua món thứ ba được giảm giá 15% là:

50 000.(100% – 15%) = 50 000.85%

50  000.85100 = 42 500 (đồng).

Số tiền bác An phải trả khi mua món thứ ba được giảm giá 20% là:

85 000.(100% – 20%) = 85 000.80%

85  000.80100 = 68 000 (đồng).

Tổng số tiền bác An phải trả khi mua bốn món hàng là:

237 500 + 115 000 + 42 500 + 68 000 = 463 000 (đồng).

Số tiền bác An được thu ngân trả lại là:

500 000 – 463 000 = 37 000 (đồng).

Vậy bác An được thu ngân trả lại 37 000 đồng.

Xem thêm Lý thuyết các bài Toán 7 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 3: Luỹ thừa của một số hữu tỉ

Lý thuyết Bài tập cuối chương 1

Lý thuyết Bài 1: Số vô tỉ. Căn bậc hai số học

Lý thuyết Bài 2: Số thực. Giá trị tuyệt đối của một số thực

Lý thuyết Bài 3: Làm tròn và ước lượng kết quả

Tài liệu có 14 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
665 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
564 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
646 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
631 13 8
Tải xuống