Giải Toán 11 trang 9 Tập 2 (Cánh diều)

150

Với giải SGK Toán 11 Cánh diều trang 9 chi tiết trong Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 9 Tập 2 (Cánh diều)

Luyện tập 5 trang 9 Toán 11 Tập 2: Xác định trung vị của mẫu số liệu ghép nhóm ở Bảng 1.

Bảng 1

Lời giải:

Ta có bảng tần số tích lũy như sau:

Nhóm

Tần số

Tần số tích lũy

[0; 4)

13

13

[4; 8)

29

42

[8; 12)

48

90

[12; 16)

22

112

[16; 20)

8

120

 

n = 120

 

Số phần tử của mẫu là n = 120. Ta có n2=1202 = 60.

Mà 42 < 60 < 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 60.

Xét nhóm 3 là nhóm [8; 12) có r = 8, d = 4, n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.

Áp dụng công thức, ta có trung vị của mẫu số liệu đã cho là:

Me 8+6042484 = 9,5.

Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:

Giải Toán 11 trang 3 Tập 2

Giải Toán 11 trang 4 Tập 2

Giải Toán 11 trang 5 Tập 2

Giải Toán 11 trang 6 Tập 2

Giải Toán 11 trang 8 Tập 2

Giải Toán 11 trang 10 Tập 2

Giải Toán 11 trang 12 Tập 2

Giải Toán 11 trang 14 Tập 2

Đánh giá

0

0 đánh giá