Với giải SGK Toán 11 Cánh diều trang 14 chi tiết trong Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 trang 14 Tập 2 (Cánh diều)
a) Lập bảng tần số ghép nhóm cho mẫu số liệu trên có sáu nhóm ứng với sáu nửa khoảng:
[40; 45), [45; 50), [50; 55), [55; 60), [60; 65), [65; 70).
b) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
c) Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?
Lời giải:
a) Bảng tần số ghép nhóm cho mẫu số liệu trên như sau:
Nhóm |
Tần số |
[40; 45) |
4 |
[45; 50) |
11 |
[50; 55) |
7 |
[55; 60) |
8 |
[60; 65) |
8 |
[65; 70) |
2 |
|
n = 40 |
b) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[40; 45) |
42,5 |
4 |
4 |
[45; 50) |
47,5 |
11 |
15 |
[50; 55) |
52,5 |
7 |
22 |
[55; 60) |
57,5 |
8 |
30 |
[60; 65) |
62,5 |
8 |
38 |
[65; 70) |
67,5 |
2 |
40 |
|
|
n = 40 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
= 53,875.
⦁ Số phần tử của mẫu là n = 40. Ta có = 20.
Mà 15 < 20 < 22 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [50; 55) có r = 50, d = 5, n3 = 7 và nhóm 2 là nhóm [45; 50) có cf2 = 15.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
Me = (km/h).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 53,6 (km/h).
⦁ Ta có = 10. Mà 4 < 10 < 15 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [45; 50) có s = 45; h = 5; n2 = 11 và nhóm 1 là nhóm [40; 45) có cf1 = 4.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
Q1 = (km/h).
⦁ Ta có = 30. Mà cf4 = 30 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm [55; 60) có t = 55; l = 5; n4 = 8 và nhóm 3 là nhóm [50; 55) có cf1 = 22.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
Q3 = = 60(km/h).
c) Nhóm 2 là nhóm [45; 50) có tần số lớn nhất với u = 45, g = 5, n2 = 11 và nhóm 1 có tần số n1= 4, nhóm 3 có tần số n3 = 7.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
Mo = (km/h).
a) Lập bảng tần số ghép nhóm cho mẫu số liệu trên có tám nhóm ứng với tám nửa khoảng:
[15; 20), [20; 25), [25; 30), [30; 35), [35; 40), [40; 45), [45; 50), [50; 55).
b) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
c) Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?
Lời giải:
a) Bảng tần số ghép nhóm cho mẫu số liệu trên như sau:
Nhóm |
Tần số |
[15; 20) |
1 |
[20; 25) |
0 |
[25; 30) |
0 |
[30; 35) |
1 |
[35; 40) |
10 |
[40; 45) |
17 |
[45; 50) |
0 |
[50; 55) |
1 |
|
n = 30 |
b) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[15; 20) |
17,5 |
1 |
1 |
[20; 25) |
22,5 |
0 |
1 |
[25; 30) |
27,5 |
0 |
1 |
[30; 35) |
32,5 |
1 |
2 |
[35; 40) |
37,5 |
10 |
12 |
[40; 45) |
42,5 |
17 |
29 |
[45; 50) |
47,5 |
0 |
29 |
[50; 55) |
52,5 |
1 |
30 |
|
|
n = 30 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 30. Ta có = 15.
Mà 12 < 15 < 29 nên nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15.
Xét nhóm 6 là nhóm [40; 45) có r = 40, d = 5, n6 = 17 và nhóm 5 là nhóm [35; 40) có cf5 = 12.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
Me = (kg).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 40,9 (kg).
⦁ Ta có = 7,5. Mà 2 < 7,5 < 12 nên nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5.
Xét nhóm 5 là nhóm [35; 40) có s = 35; h = 5; n5 = 10 và nhóm 4 là nhóm [30; 35) có cf4 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
Q1 = = 37,75 (kg).
⦁ Ta có = 22,5. Mà 12 < 22,5 < 29 nên nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5.
Xét nhóm 6 là nhóm [40; 45) có t = 40; l = 5; n4 = 17 và nhóm 5 là nhóm [35; 40) có cf5 = 12.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
Q3 = (kg).
c) Nhóm 6 là nhóm [40; 45) có tần số lớn nhất với u = 40, g = 5, n6 = 17 và nhóm 5 có tần số n5 = 10, nhóm 7 có tần số n7 = 0.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
Mo = (kg).
Nhóm |
Tần số |
Tần số tích lũy |
[30; 40) [40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
4 10 14 6 4 2 |
4 14 28 34 38 40 |
|
n = 40 |
|
Bảng 15
a) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Mốt của mẫu số liệu ghép nhóm trên là bao nhiêu?
Lời giải:
a) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[30; 40) |
35 |
4 |
4 |
[40; 50) |
45 |
10 |
14 |
[50; 60) |
55 |
14 |
28 |
[60; 70) |
65 |
6 |
34 |
[70; 80) |
75 |
4 |
38 |
[80; 90) |
85 |
2 |
40 |
|
|
n = 40 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
= 55,5.
⦁ Số phần tử của mẫu là n = 40. Ta có = 20.
Mà 14 < 20 < 28 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [50; 60) có r = 50, d = 10, n3 = 14 và nhóm 2 là nhóm [40; 50) có cf2 = 14.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
Me = (cm).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 54,29 (cm).
⦁ Ta có = 10. Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [40; 50) có s = 40; h = 10; n2 = 10 và nhóm 1 là nhóm [30; 40) có cf1 = 4.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
Q1 = = 46 (cm).
⦁ Ta có = 30. Mà 28 < 30 < 34 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm [60; 70) có t = 60; l = 10; n4 = 6 và nhóm 3 là nhóm [50; 60) có cf3 = 28.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
Q3 = (cm).
b) Nhóm 3 là nhóm [50; 60) có tần số lớn nhất với u = 50, g = 10, n3 = 14 và nhóm 2 có tần số n2 = 10, nhóm 4 có tần số n4 = 6.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
Mo = (cm).
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.