Bài 4 trang 24 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

158

Với giải Bài 4 trang 24 SGK Toán 11 Cánh diều chi tiết trong Toán 11 (Cánh diều) Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 4 trang 24 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Bài 4 trang 24 Toán 11 Tập 2: Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng. Chọn ngẫu nhiên 5 viên bi từ hộp đó. Tính xác suất để trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng.

Lời giải:

− Mỗi cách chọn ra đồng thời 5 viên bi trong hộp có 12 viên bi cho ta một tổ hợp chập 5 của 12 phần tử. Do đó, không gian mẫu gồm các tổ hợp chập 5 của 12 phần tử và nΩ=C125 = 792.

− Xét biến cố A: “Trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng”.

Khi đó biến cố đối của biến cố A là A¯: “Trong 5 viên bi không có viên bi màu vàng hoặc có 1 viên bi màu vàng”.

 Trường hợp 1: Trong 5 viên bi không có viên bi màu vàng.

 C75 = 21 cách chọn.

 Trường hợp 1: Trong 5 viên bi có 1 viên bi màu vàng.

 C51C74 = 175 cách chọn.

Như vậy, số kết quả thuận lợi cho biến cố A¯ là: nA¯ = 21 + 175 = 196

Suy ra PA¯=nA¯nΩ=196792=49198.

Do đó P(A) = 1PA¯=149198=149198.

Đánh giá

0

0 đánh giá