Bạn cần đăng nhập để báo cáo vi phạm tài liệu

Người ta chứng minh được rằng hai đường thẳng y = ax + b (a ≠ 0) và y = a'x + b' (a' ≠ 0) vuông góc với nhau

190

Với giải Bài tập 7.38 trang 34 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 29: Hệ số góc của đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Người ta chứng minh được rằng hai đường thẳng y = ax + b (a ≠ 0) và y = a'x + b' (a' ≠ 0) vuông góc với nhau

Bài tập 7.38 trang 34 SBT Toán 8 Tập 2: Người ta chứng minh được rằng hai đường thẳng y = ax + b (a ≠ 0) và y = a'x + b' (a' ≠ 0) vuông góc với nhau khi tích hai hệ số góc của chúng bằng –1, tức là khi aa' = –1. Tìm giá trị của m để đường thẳng y = (2m – 4)x + 3 (m ≠ 2) vuông góc với đường thẳng y = -1/2 + 1.

Lời giải:

Để đường thẳng y = (2m – 4)x + 3 (m ≠ 2) vuông góc với đường thẳng y =12x + 1 thì:

2m4.12=1

2m – 4 = 2

2m = 6

m = 3 (thỏa mãn).

Vậy m = 3.

Đánh giá

0

0 đánh giá