Lý thuyết Hệ số góc của đường thẳng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8

206

Toptailieu.vn xin giới thiệu Lý thuyết Hệ số góc của đường thẳng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Hệ số góc của đường thẳng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8

A. Lý thuyết Hệ số góc của đường thẳng

1. Hệ số góc của đường thẳng

Góc tạo bởi đường thẳng y = ax + b (a0) và trục Ox.

Trong mặt phẳng tọa độ Oxy, cho đường thẳng y = ax + b (a0). Gọi A là giao điểm của đường thẳng y = ax + b và trục Ox, T là một điểm thuộc đường thẳng y = ax + b và có tung độ dương.

Góc α tạo bởi hai tia Ax và AT gọi là góc tạo bởi đường thẳng y = ax + b và trục Ox (hoặc nói đường thẳng y = ax + b tạo với trục Ox một góc α)

Hệ số góc: Ta gọi a là hệ số góc của đường thẳng y = ax + b (a0).

Ví dụ: Đường thẳng y = 3x – 1 có hệ số góc là 3;

y = 2 – x có hệ số góc là -1.

2. Nhận biết hai đường thẳng song song

Hai đường thẳng y = ax + b (a0) và y = a’x + b’ (a’0) song song với nhau khi a = a’; b  b’ và ngược lại.

Hai đường thẳng y = ax + b (a0) và y = a’x + b’ (a’0) trùng nhau khi a = a’; b = b’ và ngược lại.

Hai đường thẳng y = ax + b (a0) và y = a’x + b’ (a’0) cắt nhau khi a  a’ và ngược lại.

Ví dụ: Đường thẳng y = -x + 1 và đường thẳng y = -x song song với nhau.

Đường thẳng y = -x + 1 và đường thẳng y = 2x + 1 cắt nhau.

Sơ đồ tư duy Hệ số góc của đường thẳng

Lý thuyết Hệ số góc của đường thẳng – Toán lớp 8 Kết nối tri thức (ảnh 1)

B. Bài tập Hệ số góc của đường thẳng

Đang cập nhật...

Xem thêm các bộ Lý thuyết Toán 8 (Kết nối tri thức) hay, chi tiết khác:

Lý thuyết Bài 28: Hàm số bậc nhất và đồ thị của hàm số bậc nhất

Lý thuyết Bài 30: Kết quả có thể và kết quả thuận lợi

Lý thuyết Bài 31: Cách tính xác suất của biến cố bằng tỉ số

Lý thuyết Bài 32: Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng

Lý thuyết Bài 33: Hai tam giác đồng dạng

Đánh giá

0

0 đánh giá