Bạn cần đăng nhập để đánh giá tài liệu

Khám phá 2 trang 68 Toán 8 Tập 2 | Chân trời sáng tạo Giải Toán lớp 8

241

Với giải Khám phá 2 trang 68 Toán 8 Tập 2 Chân trời sáng tạo Bài 2: Các trường hợp đồng dạng của hai tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Khám phá 2 trang 68 Toán 8 Tập 2 | Chân trời sáng tạo Giải Toán lớp 8

Khám phá 2 trang 68 Toán 8 Tập 2: Cho tam giác DEF và ABC có DE=13AB, DF=13AC, D^=A^ (Hình 5). Trên tia AB, lấy điểm M sao cho AM = DE. Qua M kẻ MN // BC (N ∈ AC).

Khám phá 2 trang 68 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) So sánh các tỉ số AMAB và ANAC.

b) So sánh AN và DF.

c) Tam giác AMN có đồng dạng với tam giác ABC không?

d) Dự đoán sự đồng dạng của hai tam giác DEF và ABC.

Lời giải:

a) Tam giác ABC có MN // BC, theo định lí Thalès, ta có: AMAB=ANAC.

b) Ta có AMAB=ANAC; DEAB=DFAC=13 ; AM = DF suy ra AN = DF.

c) Tam giác ABC có MN cắt AB, AC lần lượt tại M và N và MN // BC.

Do đó ΔAMN ᔕ ΔABC.

d) Xét ∆DEF và ∆AMN có:

D^=A^

DE = AM (gt)

DF = AN (cmt)

Do đó ΔDEF = ΔAMN (c.g.c)

Dự đoán: ΔDEF ᔕ ΔABC.

Đánh giá

0

0 đánh giá