Với giải Bài 9.65 trang 69 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài tập cuối chương 9 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Cho tam giác ABC vuông tại A (AC > AB), có AD là đường phân giác của góc A (D thuộc BC)
Bài 9.65 trang 69 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại A (AC > AB), có AD là đường phân giác của góc A (D thuộc BC). Qua D vẽ đường thẳng vuông góc với BC cắt cạnh AC tại E và cắt tia BA tại F. Chứng minh rằng:
a) ∆BDF ᔕ ∆EDC;
b) BD = DE.
Lời giải:
a)
Tam giác FBD và tam giác CED cùng vuông tại D có:
.
Do đó, ∆BDF ᔕ ∆EDC (góc nhọn).
b)
Tam giác ABC vuông tại A và tam giác DEC vuông tại D có:
chung
Do đó, ∆ABC ᔕ ∆DEC (góc nhọn). Suy ra .
Vì AD là phân giác của góc BAC trong tam giác ABC nên .
Suy ra .
Do đó . Suy ra BD = DE.
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác:
Câu 1 trang 68 SBT Toán lớp 8 Tập 2: Câu nào sau đây là sai ?
Bài 9.66 trang 69 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông tại A có đường cao AH.
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.