Toptailieu.vn biên soạn và giới thiệu lời giải Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7 trang 51 hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi sgk Toán 11 Bài tập cuối chương 7 trang 51 từ đó học tốt môn Toán 11.
Toán 11 (Chân trời sáng tạo) Bài tập cuối chương 7 trang 51
Giải Toán 11 trang 51 Tập 2
Trắc nghiệm
Lời giải:
Đáp án đúng là: B
Ta có y' = (x3 – 3x2)' = 3x2 – 6x.
Tiếp tuyến với đồ thị của hàm số tại điểm M(−1; −4) có hệ số góc là:
k = y'(−1) = 3*(−1)2 – 6*(−1) = 9.
Vậy k = 9 là hệ số góc cần tìm.
Bài 2 trang 51 Toán 11 Tập 2: Hàm số y = −x2 + x + 7 có đạo hàm tại x = 1 bằng
Lời giải:
Đáp án đúng là: A
Có y' = (−x2 + x + 7)' = −2x + 1.
Khi đó y'(1) = −2*1 + 1 = −1.
Vậy đạo hàm của hàm số y = −x2 + x + 7 tại x = 1 là −1.
Lời giải:
Đáp án đúng là: D
Có f'(x) = (2x3 – x2 + 3)' = 6x2 – 2x.
= 3x2 + x.
Để f'(x) > g'(x) thì 6x2 – 2x > 3x2 + x
3x2 – 3x > 0 3x(x – 1) > 0
x < 0 hoặc x > 1.
Vậy tập nghiệm của bất phương trình là: (−; 0) (1; +).
Bài 4 trang 51 Toán 11 Tập 2: Hàm số có đạo hàm là
Lời giải:
Đáp án đúng là: C
.
Bài 5 trang 51 Toán 11 Tập 2: Hàm số có đạo hàm cấp hai tại x = 1 là
Lời giải:
Đáp án đúng là: D
Có ; .
Khi đó .
Tự luận
Lời giải:
Có f'(x) = (x2 – 2x + 3)' = 2x – 2.
Phương trình tiếp tuyến với (C) tại điểm M có hệ số góc k = f'(−1) = 2×(−1) – 2 = −4.
Do đó phương trình tiếp tuyến với (C) tại điểm M là:
y = −4(x + 1) + 6 = −4x + 2.
Vậy y = −4x + 2 là tiếp tuyến cần tìm.
Bài 7 trang 51 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
Lời giải:
a) y' = (3x4 – 7x3 + 3x2 + 1)' = 12x3 – 21x2 + 6x.
b) y' = [(x2 – x)3]' = 3(x2 – x)2×(x2 – x)' = 3(x2 – x)2×(2x – 1).
c)
.
Bài 8 trang 51 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
Lời giải:
a) y' = [(x2 + 3x – 1)ex]' = (x2 + 3x – 1)'ex + (x2 + 3x – 1)(ex)'
= (2x + 3)ex + (x2 + 3x – 1)ex = (x2 + 5x + 2)ex.
b) y' = (x3log2x)' = (x3)'log2x + x3(log2x)'
= 3x2log2x + .
Bài 9 trang 51 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:
Lời giải:
a) y' = [tan(ex + 1)]' = .
b)
.
c) y' = [cot(1 – 2x)]' =
.
Bài 10 trang 51 Toán 11 Tập 2: Tính đạo hàm cấp hai của các hàm số sau:
Lời giải:
a) y' = (x3 – 4x2 + 2x – 3)' = 3x2 – 8x + 2.
y" = (3x2 – 8x + 2)' = 6x – 8.
Vậy y" = 6x – 8.
b) y' = (x2ex)' = (x2)'×ex + x2(ex)' = 2xex + x2ex = (2x + x2)ex.
y" = [(2x + x2)ex]' = (2x + x2)'ex + (2x + x2)(ex)'
= (2x + 2)ex + (2x + x2)ex = (x2 + 4x + 2)ex.
Vậy y" = (x2 + 4x + 2)ex.
a) Vận tốc rơi của viên sỏi lúc t = 2;
b) Vận tốc của viên sỏi khi chạm đất.
Lời giải:
a) Vận tốc rơi của viên sỏi tại thời điểm t là v(t) = s'(t) = (4,9t2)' = 9,8t.
Vận tốc rơi của viên sỏi lúc t = 2 là v(2) = 9,8×2 = 19,6 (m/s).
Vậy vận tốc rơi của viên sỏi lúc t = 2 là 19,6 m/s.
b) Viên sỏi chạm đất khi 4,9t2 = 44,1 t2 = 9 t = 3 (vì t > 0).
Vận tốc của viên sỏi khi chạm đất là v(3) = 9,8×3 = 29,4 (m/s).
Vậy vận tốc của viên sỏi khi chạm đất là 29,4 m/s.
Lời giải:
Ta có v(t) = s'(t) = (2t3 + 4t + 1)' = 6t2 + 4.
a(t) = v'(t) = (6t2 + 4)' = 12t.
Vận tốc của vật khi t = 1 là: v(1) = 6×12 + 4 = 10 (m/s).
Gia tốc của vật khi t = 1 là: a(1) = 12×1 = 12 (m/s2).
Vậy vận tốc và gia tốc của vật khi t = 1 lần lượt là 10 m/s và 12 m/s2.
Giải Toán 11 trang 52 Tập 2
Lời giải:
Tốc độ tăng dân số tại thời điểm t là
.
Tốc độ tăng dân số tại thời điểm t = 12 là
(nghìn người/năm).
Vậy tốc độ tăng dân số tại thời điểm t = 12 khoảng −2,884 nghìn người/năm.
Lời giải:
Ta có .
Tốc độ thay đổi của S theo r khi r = 0,8 là:
.
Vậy tốc độ thay đổi của S theo r khi r = 0,8 khoảng −12,207.
Lời giải:
Có T'(t) = (−0,1t2 + 1,2t + 98,6)' = −0,2t + 1,2.
Tốc độ thay đổi của nhiệt độ ở thời điểm t = 1,5 là:
T'(1,5) = −0,2×1,5 + 1,2 = 0,9°F/ngày.
Vậy tốc độ thay đổi của nhiệt độ ở thời điểm t = 1,5 là 0,9°F/ngày.
Lời giải:
Ta có .
Tốc độ thay đổi của nhịp tim khi lượng máu tim đẩy đi ở một nhịp v = 80 là
(ml/nhịp).
Vậy tốc độ thay đổi của nhịp tim khi lượng máu tim đẩy đi ở một nhịp v = 80 là −0,9375 ml/nhịp.
Xem thêm Lời giải bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Các quy tắc tính đạo hàm
Bài 1: Hai đường thẳng vuông góc
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Hai mặt phẳng vuông góc
Bài 4: Khoảng cách trong không gian
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.