Bài 3 trang 115 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

184

Với giải Bài 3 trang 115 SGK Toán 11 Cánh diều chi tiết trong Toán 11 (Cánh diều) Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 3 trang 115 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Bài 3 trang 115 Toán 11 Tập 2: Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng 60°.

a) Chứng minh rằng hai mặt phẳng (ACC’A’) và (BDD’B’) vuông góc với nhau.

b) Tính khoảng cách giữa hai đường thẳng AB và C’D’.

Lời giải:

Bài 3 trang 115 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có ABCD.A’B’C’D’ là hình lăng trụ đứng nên BB’ ⊥ (ABCD).

Mà AC ⊂ (ABCD) nên BB’ ⊥ AC.

Do ABCD là hình vuông nên AC ⊥ BD.

Ta có: AC ⊥ BB’, AC ⊥ BD và BB’ ∩ BD = B trong (BDD’B’).

Suy ra AC ⊥ (BDD’B’).

Hơn nữa AC ⊂ (ACC’A’).

Từ đó, ta có (ACC’A’) ⊥ (BDD’B’).

b) Vì ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’D’DC là hình chữ nhật.

Do đó CD // C’D’.

Mà CD // AB (do ABCD là hình vuông) nên AB // C’D’.

Khi đó, d(AB, C’D’) = d(B, C’D’). (1)

Vì ABCD.A’B’C’D’ là hình lăng trụ đứng và đáy ABCD là hình vuông nên A’B’C’D’ cũng là hình vuông.

Do đó C’D’ ⊥ B’C’.

Ta có: C’D’ ⊥ B’C’;

C’D’ ⊥ C’C (do C’D’DC là hình chữ nhật);

B’C’ ∩ C’C = C’ trong (BCC’B’).

Suy ra C’D’ ⊥ (B’C’CB).

Mà BC’ ⊂ (B’C’CB) nên C’D’ ⊥ BC’.

Khi đó d(B, C’D’) = BC’. (2)

Từ (1) và (2) ta có: d(AB, C’D’) = BC’.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’C ⊥ (ABCD).

Khi đó AC là hình chiếu của AC’ trên (ABCD).

Suy ra góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng C'AC^=60°.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Suy ra AC=a2.

Ta có: C’C ⊥ (ABCD) và AC ⊂ (ABCD) nên C’C ⊥ AC.

Xét tam giác C’AC vuông tại C (do C’C ⊥ AC) có: tanC'AC^=C'CAC

Do đó C'C=AC.tanC'AC^=a2.tan60°=a6.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên B’C’CB là hình chữ nhật.

Suy ra C’C ⊥ BC.

Áp dụng định lí Pythagore vào tam giác C’CB vuông tại C (vì C’C ⊥ BC) có:

BC’2 = CC’2 + BC2

Suy ra BC'=CC'2+BC2=a62+a2=a7.

Do đó dAB,C'D'=BC'=a7.

Vậy khoảng cách giữa hai đường thẳng AB và C’D’ bằng a7.

Đánh giá

0

0 đánh giá