Bài 7.44 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

135

Với giải Bài 7.44 trang 65 SGK Toán 11 Kết nối tri thức chi tiết trong Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 7.44 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán lớp 11

Bài 7.44 trang 65 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CD và AB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và SA = a2 . Tính theo a khoảng cách từ S đến mặt phẳng (ABCD) và thể tích của khối chóp S.ABCD.

Lời giải:

Bài 7.44 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi O là giao điểm của AC và BD.

Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) nên SO  (ABCD).

Khi đó d(S, (ABCD)) = SO.

Kẻ AH  DC tại H, BK  DC tại K.

Khi đó ABKH là hình chữ nhật nên AB = HK = a.

Xét AHD và BKC có: AD = BC = a, AHD^=BKC^=90° , ADH^=BCK^ (do ABCD là hình thang cân).

Do đó AHD = BKC, suy ra DH = CK = DCHK2=2aa2=a2 ;

CH = HK + CK = a+a2=3a2.

Xét tam giác AHD vuông tại H, có AH = AD2DH2=a2a24=a32 .

Xét tam giác AHC vuông tại H, có AC = AH2+HC2=3a24+9a24=a3.

Vì AB // CD nên AOOC=ABCDAOOC=a2a=12AO=13AC=a33 .

Xét tam giác SOA vuông tại O, có SO = SA2AO2=2a2a23=a153 .

Khi đó d(S, (ABCD)) =a153 .

Ta có SABCD=12AB+CDAH=12a+2aa32=3a234 .

Vậy VS.ABCD=13SABCDSO=133a234a153=a34512=a354.

Đánh giá

0

0 đánh giá