SBT Toán 8 (Cánh diều) Bài 8: Trường hợp đồng dạng thứ ba của tam giác

248

Toptailieu.vn biên soạn và giới thiệu lời giải SBT Toán 8 (Cánh diều) Bài 8: Trường hợp đồng dạng thứ ba của tam giác hay, chi tiết sẽ giúp học sinh dễ dàng trả lời câu hỏi vở bài tập Toán 8 Bài 8 từ đó học tốt môn Toán 8.

SBT Toán 8 (Cánh diều) Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Bài 44 trang 78 SBT Toán 8 Tập 2Quan sát Hình 43 và chỉ ra hai cặp tam giác đồng dạng:

Quan sát Hình 43 và chỉ ra hai cặp tam giác đồng dạng

Lời giải:

• Tam giác DEF có ED = FD nên tam giác DEF cân tại D.

Suy ra EFD^=FED^=69°.

Ta có: EFD^+FED^+EDF^=180° (tổng ba góc của một tam giác)

Suy ra EDF^=180°EFD^FED^ = 180°69°69°=42°.

Xét ∆ABC và ∆DEF có:

BAC^=EDF^=42°;

ABDE=ACDF (do AB = AC, ED = FD)

Suy ra ∆ABC ᔕ ∆DEF (c.g.c).

• Xét ∆ MNP có: M^+N^+P^=180° (tổng ba góc của một tam giác)

Suy ra P^=180°M^N^ = 180°72°63°=45°.

Xét ∆MNP và ∆HIK có:

M^=H^=72°; P^=K^=45°

Suy ra ∆MNP ᔕ ∆HIK (g.g).

Bài 45 trang 78 SBT Toán 8 Tập 2Cho hình thang ABCD có AB // CD, AB = 4 cm, DB = 6 cm và DAB^=DBC^. Tính độ dài CD.

Lời giải:

Cho hình thang ABCD có AB // CD, AB = 4 cm, DB = 6 cm

Ta có: AB // CD nên ABD^=BDC^ (hai góc so le trong).

Xét ∆ABD và ∆BDC có:

DAB^=DBC^;

ABD^=BDC^

Suy ra ∆ABD ᔕ ∆BDC (g.g).

Do đó ABBD=BDDC (tỉ số đồng dạng)

Nên CD=BD2AB=624=9 (cm).

Vậy CD = 9 cm.

Bài 46 trang 78 SBT Toán 8 Tập 2Bác An cần đo khoảng cách AC, với A, C nằm ở hai bên bờ của một hồ nước (Hình 44a). Bác An đã tiến hành đo như sau:

• Chọn điểm B trên bờ (có điểm C) sao cho BC = 20 m;

• Dùng thước đo góc, đo được các góc ABC^=32°, ACB^=77°.

Chứng minh rằng: Nếu thực hiện vẽ trên giấy một tam giác DEF sao cho EF = 10 (cm), DEF^=32°DFE^=77° (Hình 44b); Đo dộ dài đoạn DF và già sử DF = a (cm) thì độ dài AC mà bác An cần đo là 2a (m).

Bác An cần đo khoảng cách AC, với A, C nằm ở hai bên bờ của một hồ nước (Hình 44a)

Lời giải:

Đổi 20 m = 2 000 cm.

Xét ∆ABC và ∆DEF có:

ABC^=DEF^=32°ACB^=DFE^=77°

Suy ra ∆ABC ᔕ ∆DEF (g.g).

Do đó BCEF=ACDF (tỉ số đồng dạng)

Hay 2 00010=ACa nên AC = 200a (cm) = 2a (m).

Bài 47 trang 79 SBT Toán 8 Tập 2Cho tam giác ABC. Lấy E, F, P lần lượt thuộc AB, AC, BC sao cho tứ giác BEFP là hình bình hành (Hình 45). Biết diện tích tam giác AEF và CFP lần lượt bằng 16 cm2 và 25 cm2.

a) Hãy chỉ ra ba cặp tam giác đồng dạng.

b) Tính diện tích tam giác ABC.

Cho tam giác ABC. Lấy E, F, P lần lượt thuộc AB, AC, BC sao cho tứ giác BEFP

Lời giải:

a) Do BEFP là hình bình hành nên EF // BP, FP // BE.

Mà E ∈ AB, P ∈ BC nên EF // BC, FP // AB.

Ta có:

• EF // BC nên ∆AEF ᔕ ∆ABC;

• FP // AB nên ∆FPC ᔕ ∆ABC;

• Do ∆AEF ᔕ ∆ABC và ∆FPC ᔕ ∆ABC nên ∆AEF ᔕ ∆FPC.

b) Ta dễ dàng chứng minh được, ∆AEF ᔕ ∆ABC thì SΔAEFSΔABC=EFBC2

Suy ra SΔAEFSΔABC=EFBC (1).

Ta cũng có ∆FPC ᔕ ∆ABC nên SΔFPCSΔABC=CPBC2

Suy ra SΔFPCSΔABC=CPBC (2).

Từ (1) và (2) ta có:

SΔAEFSΔABC+SΔFPCSΔABC = EFBC+CPBC=BPBC+CPBC=BCBC=1 (do BEFP là hình bình hành nên EF = BP)

Cho tam giác ABC. Lấy E, F, P lần lượt thuộc AB, AC, BC sao cho tứ giác BEFP

Vậy SABC = 81 m2.

Bài 48 trang 79 SBT Toán 8 Tập 2Cho hình bình hành ABCD (AC > BD). Từ C kẻ CE vuông góc với AB (E thuộc đường thẳng AB), CF vuông góc với AD (F thuộc đường thẳng AD). Chứng minh: AB.AE + AD.AF = AC2.

Lời giải:

Cho hình bình hành ABCD (AC > BD). Từ C kẻ CE vuông góc với AB (E thuộc đường thẳng AB)

Gọi H, K lần lượt là hình chiếu của D, B trên đường thẳng AC.

Xét ∆AHD và ∆AFC có:

AHD^=AFC^=90°FAC^ là góc chung

Suy ra ∆AHD ᔕ ∆AFC (g.g).

Do đó ADAC=AHAF (tỉ số đồng dạng) hay AD.AF = AC.AH (1).

Xét ∆AKB và ∆AEC có:

AKB^=AEC^=90°EAC^là góc chung

Suy ra ∆AKB ᔕ ∆AEC (g.g).

Suy ra ABAC=AKAE (tỉ số đồng dạng) hay AB.AE = AC.AK (2).

Do ABCD là hình bình hành nên AB = CD, AB // CD.

Suy ra BAK^=DCH^ (2 góc ở vị trí so le trong)

Xét ∆ABK và ∆CDH có:

AB = CD, BAK^=DCH^

Suy ra ∆ABK = ∆CDH (cạnh huyền – góc nhọn)

Do đó AK = HC (hai cạnh tương ứng).

Cộng (1) và (2) theo vế ta được:

AD.AF + AB.AE = AC.(AH + AK)

= AC.(AH + HC) (do AK = HC)

= AC.AC = AC2.

Vậy AB.AE + AD.AF = AC2.

Bài 49 trang 79 SBT Toán 8 Tập 2Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC, H trên cạnh CD sao cho GOH^=45°. Gọi M là trung điểm của AB. Chứng minh:

a) ∆HOD ᔕ ∆OGB;

b) MG // AH.

Lời giải:

Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo, lấy G trên cạnh BC

a) Do ABCD là hình vuông nên đường chéo là tia phân giác của mỗi góc.

Suy ra CDB^=CBD^=45°.

Mặt khác:

DOH^+BOG^=180°GOH^=180°45°=135°;

BOG^+BGO^=180°OBG^=180°45°=135°.

Suy ra DOH^=BGO^.

Xét ∆HOD và ∆OGB có:

HDO^=OBG^=45°DOH^=BGO^

Suy ra ∆HOD ᔕ ∆OGB (g.g).

b) Theo câu a, ta có ∆HOD ᔕ ∆OGB, suy ra HDOB=ODGB (tỉ số đồng dạng)

Do đó HD.GB = OB.OD.

Đặt MB = a, khi đó AD = 2a (do M là trung điểm của AB, AB = AD)

Xét ∆ABD vuông tại A, theo định lí Pythagore ta có: BD2 = AB2 + AD2.

Do đó BD=AB2+AD2 = 2a2+2a2=8a2=2a2.

Suy ra OB=OD=a2.

Khi đó HD.GB=OB.OD = a2a2=2a2 = 2aa=ADBM

Vì HD.GB = AD.BM nên HDBM=ADBG

Xét ∆DHA và ∆BMG có:

HDA^=MBG^=90° và HDBM=ADBG

Suy ra ∆DHA ᔕ ∆BMG (c.g.c).

Do đó AHD^=M1^ (hai góc tương ứng)

Mà AHD^=BAH^ (hai góc so le trong do AB // CD).

Suy ra M1^=BAH^

Mà M1^ và BAH^ ở vị trí đồng vị nên MG // AH.

Xem thêm lời giải SBT Toán lớp 8 bộ sách Cánh diều hay, chi tiết khác:

Đánh giá

0

0 đánh giá