Bài 3 trang 56 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

76

Với giải Bài 3 trang 56 SGK Toán 11 Chân trời sáng tạo chi tiết trong Toán 11 (Chân trời sáng tạo) Bài 1: Hai đường thẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Bài 3 trang 56 Toán 11 Tập 2 | Chân trời sáng tạo Giải Toán lớp 11

Bài 3 trang 56 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = SB = SC = a, BSA^=CSA^=60°,BSC^=90°. Cho I và J lần lượt là trung điểm của SA và BC. Chứng minh rằng IJ ⊥SA và IJ ⊥BC.

Lời giải:

Bài 3 trang 56 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Xét tam giác SAB có:

SA = SB = a

BSA^=60°

 Tam giác SAB đều.

Mà I là trung điểm của SA ⇒ IB = a32

Xét tam giác SAC có:

SA = SC = a

ASC^=60°

 Tam giác SAC đều.

Mà I là trung điểm của SA ⇒ IC = a32

Ta có BSC là tam giác vuông cân tại S.

 BC=SB2+SC2=a2

Xét tam giác ABC:

AB = AC = a

AB2 + AC2 = a2 + a2 = 2a2

BC2 = a22= 2a2

 AB2 + AC2 = BC2

⇒ Tam giác ABC vuông cân tại A.

Mà J là trung điểm đoạn BC ⇒ AJ ⊥ BC

  AJ = AB2BJ2=a2a222=a22

Xét tam giác SBC vuông cân tại S:

Mà J là trung điểm đoạn BC ⇒  SJ ⊥ BC

  SJ = SB2BJ2=a2a222=a22

Xét tam giác JSA:

AJ = SJ = a22

  Tam giác JSA cân tại J.

Mà I là trung điểm của SA ⇒ IJ là đường trung tuyến của tam giác JSA.

hay IJ ⊥SA.

Xét tam giác IBC:

IB = IC = a32

 Tam giác IBC cân tại I.

Mà J là trung điểm của BC ⇒  IJ là đường trung tuyến của tam giác IBC.

hay IJ ⊥BC.

Đánh giá

0

0 đánh giá