Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8

207

Toptailieu.vn xin giới thiệu Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8. Bài viết gồm phần lý thuyết trọng tâm nhất được trình bày một cách dễ hiểu, dễ nhớ bên cạnh đó là bộ câu hỏi trắc nghiệm có hướng dẫn giải chi tiết để học sinh có thể vận dụng ngay lý thuyết, nắm bài một cách hiệu quả nhất. Mời các bạn đón xem:

Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức) hay, chi tiết | Lý thuyết Toán 8

A. Lý thuyết Định lí Pythagore và ứng dụng

1. Định lí Pythagore

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 1)

 

ΔABC,A^=90oBC2=AB2+AC2

Ví dụ:

Tam giác ABC có AB = 3cm, BC = 5cm, AC = 4cm thì tam giác ABC vuông tại A do 32+42=52, suy ra BC2=AB2+AC2.

2. Định lí Pythagore đảo

Nếu tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 2)

ΔABC,BC2=AB2+AC2A^=90o

3. Ứng dụng của định lí Pythagore

a. Tính độ dài đoạn thẳng

Nhận xét: Nếu tam giác vuông ABC tại A có đường cao AH = h, các cạnh BC = a, AC = b, AB = c thì h.a = b.c.

Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 3)

Ví dụ: Tam giác ABC vuông tại A có AB = 5cm, AC = 12cm thì BC = 52+122=169=13

b. Chứng minh tính chất hình học

Chú ý: AM là đường cao, AC, AD là đường xiên thì đoạn thẳng MC là hình chiếu của đường xiên AC và MD là hình chiếu của đường xiên AD.

Lý thuyết Định lí Pythagore và ứng dụng (Kết nối tri thức 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 4)

Sơ đồ tư duy Định lí Pythagore và ứng dụng

Lý thuyết Định lí Pythagore và ứng dụng – Toán lớp 8 Kết nối tri thức (ảnh 1)

B. Bài tập Định lí Pythagore và ứng dụng

Đang cập nhật...

Xem thêm các bộ Lý thuyết Toán 8 (Kết nối tri thức) hay, chi tiết khác:

Lý thuyết Bài 34: Ba trường hợp đồng dạng của hai tam giác

Lý thuyết Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Lý thuyết Bài 37: Hình đồng dạng

Lý thuyết Bài 38: Hình chóp tam giác đều

Lý thuyết Bài 39: Hình chóp tứ giác đều

Đánh giá

0

0 đánh giá