Toán 7 Kết nối tri thức Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

0.9 K

Toptailieu.vn giới thiệu Giải bài tập Toán lớp 7 trang 70, 71, 72, 73 Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác sách Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7 Tập 1. Mời các bạn đón xem:

Giải SGK Toán 7 Bài 14 Kết nối tri thức: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

1. Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh (c.g.c)

Hoạt động 1 trang 70 SGK Toán 7 Tập 1: Vẽ xAy^ = 60°. Lấy điểm B trên tia Ax và điểm C trên tia Ay sao cho: AB = 4 cm, AC = 3 cm. Nối điểm B với điểm C ta được tam giác ABC (H.4.27)

Dùng thước thẳng có vạch chia đo độ dài cạnh BC của tam giác ABC.

Phương pháp giải:

Dùng thước thẳng có vạch chia đo độ dài cạnh BC của tam giác ABC.

Lời giải:

Dùng thước thẳng có vạch chia đo độ dài cạnh BC ta được: BC=3,6cm.

Hoạt động 2 trang 70 SGK Toán 7 Tập 1: Vẽ thêm tam giác A’B’C’ với  BAC^= 60°, A’B’ = 4 cm và A'C'= 3 cm (H.4.28).

Dùng thước thẳng có vạch chia hoặc compa để so sánh độ dài các cạnh tương ứng của hai tam giác ABC và ABC.

- Hai tam giác ABC và ABC có bằng nhau không?

- Độ dài các cạnh AB và AB của hai tam giác em vừa vẽ có bằng các cạnh AB và AB của hai tam giác các bạn khác về không?

- Hai tam giác em vừa vẽ có bằng hai tam giác mà các bạn khác vẽ không?

Phương pháp giải:

Dùng thước thẳng có vạch chia đo độ dài cạnh BC của tam giác ABC.

Lời giải:

- Độ dài các cạnh tương ứng của 2 tam giác ABC và A’B’C’ bằng nhau.

- Hai tam giác ABC và ABC có bằng nhau.

- Độ dài các cạnh AB và AB của hai tam giác em vừa vẽ có bằng các cạnh AB và AB của hai tam giác các bạn khác vẽ.

- Hai tam giác em vừa vẽ có bằng hai tam giác mà các bạn khác vẽ.

Câu hỏi trang 71 SGK Toán 7 Tập 1: Trong Hình 4.29, hai tam giác nào bằng nhau?

Phương pháp giải:

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải:

Xét 2 tam giác ABC và MNP có:

AB=MN

BAC^=NMP^

AC=MP

Vậy ΔABC=ΔMNP(c.g.c)

Luyện tập 1 trang 71 SGK Toán 7 Tập 1: Hai tam giác ABC và MNP trong Hình 431 Có bằng nhau không? Vì sao?

Phương pháp giải:

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải:

Xét tam giác MNP có:

M^+N^+P^=180oM^+50o+70o=180oM^=60o

Xét 2 tam giác ABC và MNP có:

AB=MN

BAC^=NMP^

AC=MP

Vậy ΔABC=ΔMNP(c.g.c)

Vận dụng trang 71 SGK Toán 7 Tập 1: Cho Hình 4.32, biết OAB^=ODC^,OA=OD và AB=CD.

Chứng minh rằng:

a) AC=DB;

b) ΔOAC=ΔODB.

Phương pháp giải:

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải:

a) Ta có:

AB=CDAB+BC=CD+BCAC=BD

b) Xét tam giác OAC và ODB có:

AC=BD(cmt)

A^=D^

OA=OD

ΔOAC=ΔODB(c.g.c)

2. Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh - góc (g.c.g)

Hoạt động 3 trang 72 SGK Toán 7 Tập 1: Vẽ đoạn thẳng BC=3cm. Vẽ hai tia Bx và Cy sao cho xBC^=80,yCB^=40 như Hình 4.33.

Lấy giao điểm A của hai tia Bx và Cy, ta được tam giác ABC (H.4.33)

Dùng thước thẳng có vạch chia độ dài hai cạnh AB, AC của tam giác ABC.

Phương pháp giải:

Dùng thước thẳng có vạch chia độ dài hai cạnh AB, AC của tam giác ABC.

Lời giải:

AB=2,2 cm

AC=3,4 cm

Hoạt động 4 trang 72 SGK Toán 7 Tập 1: Vẽ thêm tam giác ABC sao cho BC=3cmABC^=80,ACB^=40.(H.4.34).

Dùng thước thẳng có vạch chia hoặc compa so sánh độ dài các cạnh của hai tam giác A B C và ABC.

Hai tam giác A B C và ABC có bằng nhau không?

Phương pháp giải:

Dùng thước thẳng hoặc compa để đo độ dài các cạnh của 2 tam giác và so sánh

Lời giải:

A’B’=2,2 cm

A’C’=3,4 cm

Hai tam giác A B C và ABC có bằng nhau.

Câu hỏi trang 72 SGK Toán 7 Tập 1: Hai tam giác nào trong Hình 4.35 bằng nhau?

Phương pháp giải:

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau

Lời giải:

Cặp tam giác bằng nhau là:

ΔABC=ΔMNP vì

B^=N^(=50)BC=NPC^=P^(=70)B^=N^(=50)BC=NPC^=P^(=70)

Vậy ΔABC=ΔMNP (g-c-g)

Luyện tập 2 trang 73 SGK Toán 7 Tập 1: Chứng minh hai tam giác ABD và CBD trong hình 4.37 bằng nhau.

Phương pháp giải:

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải:

Xét hai tam giác ABD và CBD có:

ABD^=CBD^

BD chung

ADB^=CDB^

ΔABD=ΔCBD(g.c.g)

Thử thách nhỏ trang 73 SGK Toán 7 Tập 1: Bạn Lan nói rằng: “Nếu tam giác này có một cạnh cùng một góc kề và góc đối diện tương ứng bằng một cạnh cùng một góc kề và góc đối diện của tam giác kia thì hai tam giác đó bằng nhau” (H.4.38). Theo em bạn Lan nói có đúng không? Vì sao?

Phương pháp giải:

Kiểm tra xem góc còn lại của hai tam giác có bằng nhau không?

Lời giải:

Do hai tam giác trên có hai cặp cạnh bằng nhau nên cặp góc còn lại bằng nhau.

C^=C^

Vậy hai tam giác đã cho bằng nhau theo trường hợp góc – cạnh – góc.

Bài tập

Bài 4.12 trang 73 SGK Toán 7 tập 1: Trong mỗi hình bên (H.4.39), hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.

Phương pháp giải

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Lời giải 

a)Xét tam giác ABD và tam giác CBD có:

AB=CD

ABD^=CDB^

BD chung

Vậy ΔABD=ΔCBD(c.g.c)

b)Xét hai tam giác OAD và OCB có:

AO=CO

AOD^=COB^(đối đỉnh)

OD=OB

Vậy ΔOAD=ΔOCB(c.g.c)

Bài 4.13 trang 73 SGK Toán 7 tập 1: Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như Hình 4.40.

a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau;

b) Chứng minh rằng ΔDAB = ΔBCD.

Phương pháp giải 

Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải 

a) Hai cặp tam giác có chung đỉnh O bằng nhau là: AOB và COD; AOD và COB theo trường hợp cạnh – góc – cạnh.

b)

Do hai tam giác AOD và COB nên: ADO^=CBO^ (2 góc tương ứng) và AD=BC (2 cạnh tương ứng)

Xét ΔDAB và ΔBCD có:

AD=BC

ADO^=CBO^

BD chung

Vậy ΔDAB =ΔBCD (c.g.c)

Bài 4.14 trang 73 SGK Toán 7 tập 1: Chứng minh rằng hai tam giác ADE và BCE trong Hình 4.41 bằng nhau.

Phương pháp giải 

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải

Xét hai tam giác ADE và BCE có:

A^=B^

AE=BE

AED^=BEC^(đối đỉnh)

Vậy ΔADE=ΔBCE(g.c.g)

Bài 4.15 trang 73 SGK Toán 7 tập 1: Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G, E, H thẳng hàng. Chứng minh rằng:

a) ΔABE =ΔDCE;

b) EG = EH.

Phương pháp giải 

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải 

a) Xét hai tam giác ABE và DCE có:

BAE^=CDE^(so le trong)

AB=CD(gt)

ABE^=DCE^(so le trong)

Vậy ΔABE =ΔDCE(g.c.g)

b)Xét hai tam giác BEG và CEH có:

CEH^=BEG^(đối đỉnh)

CE=BE (do ΔABE =ΔDCE)

ECH^=EBG^(so le trong)

Suy ra ΔBEG=ΔCEH(g.c.g)

Vậy EG=EH (hai cạnh tương ứng).

Đánh giá

0

0 đánh giá